Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-9x^2+27x-27=-8\Leftrightarrow\left(x^3-27\right)-\left(9x^2-27x\right)=\left(x-3\right)\left(x^2+3x+9\right)-9x\left(x-3\right)=\left(x-3\right)\left(x^2-6x+9\right)=\left(x-3\right)^3=-8=\left(-2\right)^3\Rightarrow x=\left(-2\right)+3=1\)
\(64x^3+48x^2+12x+1=\left(64x^3+1\right)+\left(48x^2+12x\right)=\left(4x+1\right)\left(16x^2-4x+1\right)+12x\left(4x+1\right)=\left(4x+1\right)\left(16x^2+8x+1\right)=\left(4x+1\right)^3=27\Rightarrow4x=2\Leftrightarrow x=\frac{1}{2}\)
c) \(\left(2x-1\right)^3-4x^2.\left(2x-3\right)=5\)
\(\Leftrightarrow\left(8x^3-12x^2+6x-1\right)-\left(8x^3-12x^2\right)=5\)
\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3+12x^2=5\)
\(\Leftrightarrow6x-1=5\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\)
d) \(\left(x+4\right)^3-x^2.\left(x+12\right)=16\)
\(\Leftrightarrow\left(x^3+12x^2+48x+64\right)-\left(x^3+12x^2\right)=16\)
\(\Leftrightarrow x^3+12x^2+48x+64-x^3-12x^2=16\)
\(\Leftrightarrow48x+64=16\)
\(\Leftrightarrow48x=-48\)
\(\Leftrightarrow x=-1\)
#vì câu a,b có người làm rồi nên mình chỉ làm c,d thôi nhé ! :)
Học Tốt !!
\(a,\left(2x-y\right)\left(4x^2-2xy+y^2\right)=\left(2x-y\right)\left(2x-y\right)^2=\left(2x-y\right)^3\)
\(b,\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2=2x^2-3xy+5y^2\)
\(c,\left(2x^3-21x^2+67x-60\right):\left(x-5\right)=\left(2x^3-10x^2-11x^2+55x+12x-60\right):x-5=\left[2x^2\left(x-5\right)-11x\left(x-5\right)+12\left(x-5\right)\right]:\left(x-5\right)=\left(x-5\right)\left(2x^2-11x+12\right)\left(x-5\right):\left(x-5\right)=2x^2-11x+12\)
Bài 1:
\(B=\dfrac{1}{9}x^2-2x+9\)
\(=\left(\dfrac{1}{3}x\right)^2-2\cdot\dfrac{1}{3}x\cdot3+3^2=\left(\dfrac{1}{2}x-3\right)^2\)
\(C=x^3-9x^2+27x-27=\left(x-3\right)^3\)
\(D=27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
\(E=\left(x-2y\right)^3\)
a)\(\left(2x-y\right)[\left(2x\right)^2-2.2x.y+y^2]\)
\(=\left(2x-y\right)^3\)
b)\(2x^2-3xy+5y^2\)
c)\(2x^3-10x^2-11x^2+55x+12x-60\)
\(=2x^2\left(x-5\right)-11x\left(x-5\right)+12\left(x-5\right)\)
\(=\left(x+5\right)\left(2x^2-11x+12\right)\)
\(\Leftrightarrow(2x^3-21x^2+67x-60)/\left(x-5\right)=2x^2-11x+12\)
a) x3 - 9x2 + 27x - 27 = -8
<=> x3 - 3x2.3 + 3x.32 - 33 = -8
<=> (x - 3)3 = -23
<=> x - 3 = -2
<=> x = 1 (T/m)
Vậy x = 1.
b) 64x3 + 48x2 + 12x + 1 = 27
<=> (4x)3 + 3.(4x)2.1 + 3.4x.12 + 13 = 27
<=> (4x + 1)3 = 33
<=> 4x + 1 = 3
<=> 4x = 2
<=> x = \(\frac{1}{2}\)(T/m)
Vậy x = \(\frac{1}{2}\).
a) \(\left(6x^3+3x^2+4x+2\right):\left(3x^2+2\right)\)
\(=\left[3x^2\left(2x+1\right)+2\left(2x+1\right)\right]⋮\left(3x^2+2\right)\)
\(=\left[\left(3x^2+2\right)\left(2x+1\right)\right]⋮\left(3x^2+2\right)\)
\(=2x+1\)
b) \(\left(2x^3-22x^2-5x^2+60x+55x-150\right):\left(x-5\right)\)
\(=\left[\left(2x^3-22x^2+60x\right)-\left(5x^2-55x+150\right)\right]:\left(x-5\right)\)
\(=\left[2x\left(x^2-11x+30\right)-5\left(x^2-11x+30\right)\right]:\left(x-5\right)\)
\(=\left[\left(2x-5\right)\left(x^2-11x+30\right)\right]:\left(x-5\right)\)
\(=\left[\left(2x-5\right)\left(x^2-5x-6x+30\right)\right]:\left(x-5\right)\)
\(=\left[\left(2x-5\right)\left(x-5\right)\left(x-6\right)\right]:\left(x-5\right)\)
\(=\left(2x-5\right)\left(x-6\right)\)
\(=2x^2-17x+30\)
d) \(\left(x^5+4x^3+3x^2-5x+15\right):\left(x^3-x+3\right)\)
\(=\left(x^5+5x^3+3x^2-x^3-5x+15\right):\left(x^3-x+3\right)\)
\(=\left[\left(x^5-x^3+3x^2\right)+\left(5x^3-5x^2+15\right)\right]:\left(x^3-x+3\right)\)
\(=\left[x^2\left(x^3-x+3\right)+5\left(x^3-x^2+3\right)\right]:\left(x^3-x+3\right)\)
\(=\left[\left(x^2+5\right)\left(x^3-x+3\right)\right]:\left(x^3-x+3\right)\)
\(=x^2+5\)
\(a,\left(2x^3-27x^2+115x-150\right)\left(x-5\right)\)
\(=x\left(2x^3-27x^2+115-150\right)-5\left(2x^3-27x^2+115-150\right)\)
\(=2x^4-27x^3+115x-150x-10x^3+135x^2-575+750\)
\(=2x^4-37x^3+135x^2-35x+175\)
a, \(\left(2x^3-27x^2+115x-150\right)\left(x-5\right)=2x^4-37x^3+250x^2-725x+750\)
b, đề sai