Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của tổng B là:
\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)
\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)
\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)
\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)
Số số hạng của tổng A thuộc nguyên âm là:
\(\frac{2014}{2}=1007\)(số hạng)
\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)
\(A=\left(-2029105\right)+4060225\)
\(A=2031120\)
Mà \(2031120=2031120\)
\(\Rightarrow A=B\)
\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)
\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)
\(A=1+2+3+4+...+2015=B\)
Ta có:
\(\frac{2015^2-2014^2}{2015^2+2014^2}-\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)
\(=\frac{2015+2014}{2015^2+2014^2}-\frac{1}{\left(2015+2014\right)^2}\)
Ta thấy phân số thứ nhất có tử lớn hơn phân số thứ 2 và có mẫu bé hơn nên phân số thứ nhất > phâm số thứ 2
Hay \(\frac{2015^2-2014^2}{2015^2+2014^2}>\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)
Dễ c/m đẳng thức: \(\left(n-1\right)\left(n+1\right)=n^2-1\)
Lúc đó: \(A=2014^2-1+2015^2-1=2014^2+2015^2-2=B\)
Vậy A = B
\(A=2013.2015+2014.2016\)
\(=\left(2015-2\right).2015+2014\left(2014+2\right)\)
\(=(2015^2-4030)+(2014^2+4028)\)
\(=\left(2015^2+2014^2\right)-\left(4030-4028\right)\)
\(=2014^2+2015^2-2\)
\(\Rightarrow A=B\)
a)\(\dfrac{x-2}{3}-\dfrac{x-3}{4}=1\Leftrightarrow\dfrac{4x-8-3x+9}{12}=1\) ⇔x+1=12⇔x=11 Vậy phương trình đã cho có tập nghiệm S=\(\left\{11\right\}\) b)\(\dfrac{x-1}{2015}+\dfrac{x-2}{2014}+\dfrac{x-5}{2011}+\dfrac{x+1}{2017}=4\) \(\Leftrightarrow\left(\dfrac{x-1}{2015}-1\right)+\left(\dfrac{x-2}{2014}-1\right)+\left(\dfrac{x-5}{2011}-1\right)+\left(\dfrac{x+1}{2017}-1\right)=4-4\) \(\Leftrightarrow\dfrac{x-1-2015}{2015}+\dfrac{x-2-2014}{2014}+\dfrac{x-5-2011}{2011}+\dfrac{x+1-2017}{2017}=0\) \(\Leftrightarrow\dfrac{x-2016}{2015}+\dfrac{x-2016}{2014}+\dfrac{x-2016}{2011}+\dfrac{x-2016}{2017}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2011}+\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow x-2016=0\) (vì \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2011}+\dfrac{1}{2017}\ne0\) )
⇔x=2016
Vậy phương trình đã cho có tập nghiệm S=\(\left\{2016\right\}\)
c)3(x-1)-5(x+4)+6(2-x)=7 ⇔3x-3-5x-20+12-6x=7⇔3x-5x-6x=7-12+20+3⇔-8x=18⇔\(x=\dfrac{-9}{4}\)
Vậy phương trình đã cho có tập nghiệm S=\(\left\{\dfrac{-9}{4}\right\}\)
Bài 3 :
\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)
Nên \(x-2017=0\)
\(\Rightarrow\)\(x=2017\)
Vậy \(x=2017\)
Chúc bạn học tốt ~
Bài 1 :
\(\left(8x-5\right)\left(x^2+2014\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)
Vậy \(x=\frac{5}{8}\)
Chúc bạn học tốt ~
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)
\(C=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2013-2014\right)\left(2013+2014\right)+2015^2\)
\(=2015^2-\left(1+2+3+4+...+2013+2014\right)\)
\(=2015^2-\dfrac{2015\cdot2014}{2}=2031120\)
a.
\(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+3}{4}=3-\dfrac{x+2}{3}\)
\(\Leftrightarrow\dfrac{\left(x+1\right).6}{12}+\dfrac{\left(x+3\right).3}{12}=\dfrac{36}{12}-\dfrac{\left(x+2\right).4}{12}\)
\(\Leftrightarrow6x+6+3x+9=36-4x-8\)
\(\Leftrightarrow9x+15=28-4x\)
\(\Leftrightarrow9x+4x=28-15\)
\(\Leftrightarrow13x=13\)
\(\Leftrightarrow x=1\)
a) \(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+3\left(x+3\right)}{12}=\dfrac{36-4\left(x+2\right)}{12}\)
\(\Leftrightarrow6\left(x+1\right)+3\left(x+3\right)=36-4\left(x+2\right)\)
\(\Leftrightarrow6x+6+3x+9=36-4x-8\)
\(\Leftrightarrow9x+15=-4x+28\)
\(\Leftrightarrow9x+4x=28-15\)
\(\Leftrightarrow13x=13\)
\(\Leftrightarrow x=1\)
Vậy ................................
(Mình giải theo cách lớp 8 nhé)
\(A=1^2-2^2+3^2-4^2+...+2015^2\)
\(=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(=1+\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)+...+\left(2015-2014\right)\left(2015+2014\right)\)
\(=1+\left(2+3\right)+\left(4+5\right)+...+\left(2014+2015\right)\)
\(=1+2+3+...+2015=B\)
\(\Leftrightarrow A=B\)