K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Bài 4:}\)

\(a.\left|x-\frac{3}{5}\right|< \frac{1}{3}\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}>-\frac{1}{3}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x>\frac{4}{15}\end{cases}\Rightarrow\frac{4}{15}< x< \frac{14}{15}}\)

\(b.\left|-5,5\right|=5,5\)

\(\Rightarrow\left|x+\frac{11}{2}\right|>5,5\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>5,5\\x+\frac{11}{2}< -5,5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>0\\x< -11\end{cases}}\)

8 tháng 2 2018

Giải:

\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=2^{64}-1\)

Vậy ...

19 tháng 7 2019

bài 2

làm câu B;C nha

B)

\(27^3=\left(3^3\right)^3=3^9\)

\(9^5=\left(3^2\right)^5=3^{10}\)

vì \(10>9\)

\(=>9^5>27^3\)

C)

\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2^3}\right)^6=\frac{1^6}{2^{18}}=\frac{1}{2^{18}}\)

\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2^5}\right)^4=\frac{1^4}{2^{20}}=\frac{1}{2^{20}}\)

vì \(2^{18}< 2^{20}\)

\(=>\frac{1}{2^{18}}>\frac{1}{2^{20}}\)

\(=>\left(\frac{1}{8}\right)^6>\left(\frac{1}{32}\right)^4\)

19 tháng 7 2019

\(\text{A.}\frac{32^3.9^5}{8^3.6^6}=\frac{\left(2^5\right)^3.\left(3^2\right)^5}{\left(2^3\right)^3.\left(2.3\right)^6}=\frac{2^{15}.3^{10}}{2^9.2^6.3^6}=\frac{3^{10}}{3^6}=3^4=81\)

\(\text{B.}\frac{\left(5^5-5^4\right)^3}{50^6}=\frac{2500^3}{50^6}=\frac{\left(50^2\right)^3}{50^6}=\frac{50^6}{50^6}=1\)

Bài 2:

\(\text{A.Ta có:}\)

\(5^6=\left(5^3\right)^2=125^2\)

\(\left(-2\right)^{14}=2^{14}=\left(2^7\right)^2=128^2\)

Vì \(125< 128\)

\(\Rightarrow125^2< 128^2\)

\(\Rightarrow5^6< \left(-2\right)^{14}\)

\(\text{B.Ta có:}\)

\(9^5=\left(3^2\right)^5=3^{10}\)

\(27^3=\left(3^3\right)^3=3^9\)

Vì \(9< 10\)

\(\Rightarrow3^9< 3^{10}\)

\(\Rightarrow27^3< 9^5\)

\(\text{C.Ta có:}\)

\(\left(\frac{1}{8}\right)^6=\left[\left(\frac{1}{2}\right)^3\right]^6=\left(\frac{1}{2}\right)^{18}\)

\(\left(\frac{1}{32}\right)^4=\left[\left(\frac{1}{2}\right)^5\right]^4=\left(\frac{1}{2}\right)^{20}\)

Vì \(18< 20\)

\(\Rightarrow\left(\frac{1}{2}\right)^{18}< \left(\frac{1}{2}\right)^{20}\)

\(\Rightarrow\left(\frac{1}{8}\right)^6< \left(\frac{1}{32}\right)^4\)