Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2(1+2)+2^3(1+2)+2^5(1+2)+...+2^99(1+2)=
=1+3(2+2^3+2^5+...+2^99)
=> A chia 3 dư 1
g/s 2n+7 chia hết cho n-2
Ta có 2n+7 cia hết n-2
2-2 chia hết n-2 =>2(n-2) chia hết n-2=>2n-4 chia hết cho n-2
do đó 2n+7-(2n+4) chia hết n-2
(=)2n+7-2n-4 chia hết n-2
(=)3 chia hết n-2 => n-2 thuộc Ư(3).............
bn tự lm tiếp nha đến đây chỉ vc lập bả ng gtrị tìm n
ta có : 2n+7/n-2=2(n-2)+11/n-2=2(n-2)/n-2+11/n-2=2+11/n-2
Để 2n+7 chia hết cho n-2 thì 11/n-2 phải có giá trị nguyên
=>n-2 phải là ước của 11
=>n-2={-11;-1;1;11}
Ta có bảng
n-2 | -11 | -1 | 1 | 11 |
n | -9 | 1 | 3 | 13 |
Vậy n={-9;1;3;13}
đề sai em ơi số cuối phải là 2^2009
\(A=1+2+2^2+2^3+...+2^{2008}+2^{2009}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2007}+2^{2008}+2^{2009}\right)\)
\(A=7+2^3\left(1+2+2^2\right)+...+2^{2007}\left(1+2+2^2\right)\)
\(A=7\cdot1+7\cdot2^3+...+7\cdot2^{2007}\)
\(A=7\left(1+2^3+...+2^{2007}\right)⋮7\)
=> A chia 7 dư 0
\(A=\)nhưu trên
=>\(A=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{2006}+2^{2007}+2^{2008}\right)\)(có 669 nhóm and thừa 2 số)
=>\(A=3+2^2\left(1+2+2^2\right)+...+2^{2006}\left(1+2+2^2\right)\)
=>\(A=3+\left(1+2+2^2\right)\left(2^5+...+2^{2006}\right)\)
=>\(A=3+7\left(2^5+...+2^{2006}\right)\)
=>\(A\)chia cho 7 dư 3
giả sử phép chia thứ 2 là đúng.
Ta có:
a = 22x + 7 (1) (x,y thuộc N )
a= 36y + 4 (2)
Từ (1) và (2) => 22x+7 = 36y +4 <=> y = ( 22x +3 )/36 (3)
,<=> y = ( 2.11x+2+1)/(2.)18)
Ta thấy (2.11x + 2 +1) là một số lẻ => ko chia hết cho 2 =>ko chia hết cho (2.18)
vậy giả thuyết ban đầu sai.
=> phép chia thứ 2 sai .
giả sử a chia 22 dư 7
\(\Rightarrow\) a là số lẻ
\(\Rightarrow\) a chia 36 cũng sẽ có số dư lẻ
mà 4 là số chẵn
Vậy phép chia thứ hai sai
gọi số đó là x
x chia 18 dư 14, chia 6 dư 2 suy ra x+4 chia hết cho 18 và 6
suy ra x+4 chia hết cho BCNN(18,6).
BCNN(18,6)=18
x+4 chia hết cho 18 suy ra x=18-4=14
A=12x +3y +6
=3(4x+y+2)
=> A chia hết cho 3 hay chia 3 dư 0
A = 1 + 2 + 22 + 23 +...+ 228
A = (1 + 2 + 22) + (23 + 24 + 25) + ... + (226 + 227 + 228)
A = 1. (1 + 2 + 22) + 23. (1 + 2 + 22) +...+ 226.(1 + 2 + 22)
A = 1.7 + 23.7 + ... + 226.7
A = (1 + 23 + ... + 226).7
⇒ A ⋮ 7 ⇒ A : 7 dư 0
4305+8060=12365