K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

Đề bài: Tính

\(A=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\frac{1}{512}+\frac{1}{2048}\)

\(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\)

\(2^2.A=2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)

\(4A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\right)\)

\(3A=2-\frac{1}{2^{11}}\)

\(\Rightarrow A=\frac{2-\frac{1}{2^{11}}}{3}\)

Vậy \(A=\frac{2-\frac{1}{2^{11}}}{3}\).

11 tháng 6 2020

ta có

A= 1/2+ 1/8+1/32+1/128+1/512+1/2048

=> A= 1/2 +1/ 2^3 +1/2^5 +1/2^7+1/2^9+1/2^11

=> 2^2 A=2+1/2+1/2^3+1/2^5+1/2^7+1/2^9

=> 2^2A-A= (2+1/2+1/2^3+1/2^5+1/2^7+1/2^9)-(1/2+1/2^3+/2^5+1/2^7+1/2^9+1/2^11)

=> 3A= 2- 1/2^11

=>3A= 4095/2048

=> A= 1365/2048

1+2+4+8+16+32+64+128+256+512+1024+2048

=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024

=1+10+20+160+320+2560+1024

=4095

5 tháng 1 2017

 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095 

k nha   avt529503_60by60.jpg   công chúa nụ cười    =_=   ^_^

2 tháng 4 2020

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{512}-\frac{1}{1024}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^9}-\frac{1}{2^{10}}\)

\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^8}-\frac{1}{2^9}\)

\(3A=1-\frac{1}{2^{10}}< 1\)

\(\Rightarrow A< \frac{1}{3}\)

18 tháng 7 2016

                    Đặt \(A=\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

                    \(A=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}+\frac{1}{2^8}\)

                \(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)

               \(2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}+\frac{1}{2^8}\right)\)

              \(A=\frac{1}{2^2}-\frac{1}{2^8}\)

           \(A=\frac{1}{4}-\frac{1}{256}=\frac{63}{256}\)

          \(\Rightarrow\frac{63}{256}.x=\frac{1}{512}=\frac{1}{2^9}\)

           \(\Rightarrow\frac{63}{2^8}.x=\frac{1}{2^9}\)

            \(\Rightarrow x=\frac{1}{2^9}:\frac{63}{2^8}=\frac{1}{2^9}.\frac{2^8}{63}=\frac{1}{2.63}=\frac{1}{126}\)

           Ủng hộ mk nha !!! ^_^

                   

10 tháng 5 2017

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)

BẤM ĐÚNG NHÉ

8 tháng 6 2017

1023/1024 nhé bạn

14 tháng 7 2018

\(1)C=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{162}\)

\(3C=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{54}\)

\(3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{54}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{162}\right)\)

\(2C=1-\dfrac{1}{162}\)

\(2C=\dfrac{161}{162}\)

\(C=\dfrac{161}{162}.\dfrac{1}{2}\)

\(C=\dfrac{161}{324}\)

\(2)A=\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}+\dfrac{1}{512}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}\)

\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}\right)-\left(\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}+\dfrac{1}{512}\right)\)

\(A=1-\dfrac{1}{512}=\dfrac{511}{512}\)

6 tháng 7 2019

#)Giải :

\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{512}\)

\(=\frac{255}{512}\)

Lời giải 

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{512}\)

\(=\frac{255}{512}\)

21 tháng 6 2018

\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-....+\frac{1}{256}-\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{512}\)

\(=\frac{255}{512}\)

Vậy \(A=\frac{255}{512}\)

21 tháng 6 2018

=1/2-1/4+1/4-1/8+1/8-....+1/156-1/152

=1/2-1/152

=255/512

A=255/512