Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a, b, c thì đơn giản òi. Câu d phải chú ý điểm rơi:v
d) Ta có: \(D=\left(x-\frac{1}{2}\right)^4+\frac{1}{2}\left(3x^2-3x+\frac{15}{8}\right)\)
\(=\left(x-\frac{1}{2}\right)^4+\frac{3}{2}\left(x-\frac{1}{2}\right)^2+\frac{9}{16}\ge\frac{9}{16}\)
Đẳng thức xảy ra khi x = 1/2
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)
\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)
\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)
\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(M=x^2.0+y.0+0+1\)
\(M=1\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)
\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
\(N=x^2.0-xy.0+2.0+2\)
\(N=2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)
\(P=x^3.0+x^2y.0-x.0+3\)
\(P=3\)
Tích mình nha!
c) (xy-1).(xy+5)
= x2y2+5xy-xy-5
=x2y2+4xy-5
a) b) d) bạn có thể ghi rõ được ko
a: =(xy-2x)-(y^2-2y)
=x(y-2)-y(y-2)
=(x-y)(y-2)
b: =(x^2-2xy+y^2)-(x-y)
=(x-y)^2-(x-y)
=(x-y)(x-y-1)
c: =(x^2-1)-(2xy-2y)
=(x-1)(x+1)-2y(x-1)
=(x-1)(x+1-2y)
d: =(x+3)(x+3-2x+5)
=(x+3)(8-x)
\(a,xy-2x-y^2+2y\)
\(=x\left(y-2\right)-y\left(y-2\right)\)
\(=\left(x-y\right)\left(y-2\right)\)
\(b,x^2-2xy+y^2-x+y\)
\(=\left(x-y\right)^2-\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-1\right)\)
\(c,x^2-1-2xy+2y\)
\(=\left(x-1\right)\left(x+1\right)-2y\left(x-1\right)\)
\(=\left(x-1\right)\left(x+1-2y\right)\)
\(d,\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(x+3-2x+5\right)\)
\(=\left(x+3\right)\left(-x+8\right)\)
#Urushi