Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,36-12x+x^2\)\(=x^2-2.x.6+6^2=\left(x-6\right)^2\)
\(b,4x^2+12x+9=\left(2x\right)^2+2.2x.3+3^2=\left(2x+3\right)^2\)
\(c,x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(d,2x^2-2y^2-6x-6y\)
\(=2\left(x-y\right)\left(x+y\right)-6\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-2y-6\right)\)
\(e,x^3+3x^2-3x-1\)
\(=\left(x^3-1\right)+\left(3x^2-3x\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+3x\right)=\left(x-1\right)\left(x^2+4x+1\right)\)
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)+3\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow x^3-3x^2+3x-1+3x^2+2x+1=x^3+8\)
\(\Leftrightarrow x^3-3x^2+3x+3x^2+2x-x^3=1-1+8\)
\(\Leftrightarrow5x=8\)
\(\Leftrightarrow x=\dfrac{8}{5}\)
Vậy \(S=\left\{\dfrac{8}{5}\right\}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)-8\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow x-2=0\) hoặc \(x-6=0\)
:) \(x-2=0\Leftrightarrow x=2\)
:) \(x-6=0\Leftrightarrow x=6\)
Vậy \(S=\left\{2;6\right\}\)
c) \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)-9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow x-2=0\) hoặc \(x-11=0\)
:) \(x-2=0\Leftrightarrow x=2\)
:) \(x-11=0\Leftrightarrow x=11\)
Vậy \(S=\left\{2;11\right\}\)
(d ko bít lèm)
#IDOL
a) \(x^3+2x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)
\(TH1:x+1=0\Leftrightarrow x=-1\)
\(TH2:x^2+x+1=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\)
Mà \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)nên loại TH2
Vậy x = 1
Câu a), x = -1 nha, kết luận nhầm
b) \(x^3-4x^2+12x-27=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+9\right)-4x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-7x+9\right)=0\)
\(TH1:x-3=0\Leftrightarrow x=3\)
\(TH2:x^2-7x+9=0\)
\(\cdot\Delta=\left(-7\right)^2-4.9=13\)
Vậy pt của TH2 có 2 nghiệm phân biệt
\(x_1=\frac{7+\sqrt{13}}{2}\);\(x_2=\frac{7-\sqrt{13}}{2}\)
\(x^2-2x=24\)
<=> \(x^2-2x-24=0\)
<=> \( \left(x+4\right)\left(x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
Vậy....
\(a,\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2+4-x^2=0\)
\(\Leftrightarrow\left(2+x\right)^2+\left(2-x\right)\left(2+x\right)=0\)
\(\Leftrightarrow\left(2+x\right)\left(2+x+2-x\right)=0\)
\(\Leftrightarrow4\left(2+x\right)=0\)
\(\Leftrightarrow2+x=0\)
\(\Leftrightarrow x=-2\)
\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)
\(\Leftrightarrow2x+255=0\)
\(\Leftrightarrow x=-127,5\)
\(x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(4x^2+4x+1-4x^2-12x-9=0\)
\(-8x-8=0\Leftrightarrow x=-1\)
\(\left(x-6\right)^2=0\)
\(x-6=0\Leftrightarrow x=6\)
c)\(x^2-12x=-36\)
\(x^2-12x+36=0\)
\(\left(x-6\right)^2=0\)
\(\Rightarrow x-6=0\)
........