Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
\(\dfrac{13+x}{20}\) = \(\dfrac{3}{4}\)
13 + \(x\) = 20 \(\times\) \(\dfrac{3}{4}\)
13 + \(x\) = 15
\(x\) = 15 - 13
\(x\) = 2
Cách khác :
\(\dfrac{13+x}{20}=\dfrac{3}{4}\)
\(\dfrac{13+x}{20}=\dfrac{15}{20}\)
\(13+x=15\)
\(x=15-13\)
\(x=2\)
a; (5142 - 17 x 8 + 242 : 11) x (27 - 3 x 9)
= (5142 - 17 x 8 + 242 : 11) x (27 - 27)
= (5142 - 17 x 8 + 242 : 11) x 0
= 0
b;
(1 + \(\dfrac{1}{2}\)) \(\times\) (1 + \(\dfrac{1}{3}\)) \(\times\) ( 1 + \(\dfrac{1}{4}\)) \(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)) \(\times\)(1 + \(\dfrac{1}{2011}\))
= \(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)
= \(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)
= \(\dfrac{2012}{2}\)
= 1006
a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)
a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)
a) (1,5 . 1,9 - x - 0,5) : 0,25 = 7,5 : 0,125
=> (2,85 - x - 0,5) : 0,25 = 60
=> (2,85 - 0,5) - x = 60 . 0,25
=> 2,35 - x = 15
=> x = 2,35 - 15
=> x = -12,65
Vậy x = -12,65
b) \(1-\left(5\frac{2}{9}+x-7\frac{7}{18}\right)\div2\frac{1}{6}=0\)
\(\Rightarrow\left(5\frac{2}{9}-7\frac{7}{18}+x\right)\div2\frac{1}{6}=1-0\)
\(\Rightarrow\left(\frac{47}{9}-\frac{133}{18}+x\right)\div2\frac{1}{6}=1\)
\(\Rightarrow\frac{-13}{6}+x=2\frac{1}{6}\)
\(\Rightarrow x=2\frac{1}{6}-\frac{-13}{6}\)
\(\Rightarrow x=\frac{13}{6}+\frac{13}{6}\)
\(\Rightarrow x=\frac{26}{6}\)
\(\Rightarrow x=\frac{13}{3}\)
Vậy \(x=\frac{13}{3}\)
c) \(35\left(2\frac{1}{5}-x\right)=32\)
\(\Rightarrow2\frac{1}{5}-x=32\div35\)
\(\Rightarrow\frac{11}{5}-x=\frac{32}{35}\)
\(\Rightarrow x=\frac{11}{5}-\frac{32}{35}\)
\(\Rightarrow x=\frac{9}{7}\)
Vậy \(x=\frac{9}{7}\)
d) \(\frac{4}{3}+\left(x\div2\frac{2}{3}-0,5\right).1\frac{35}{55}=0,6\)
\(\Rightarrow\left(x\div\frac{8}{3}-\frac{1}{2}\right).\frac{18}{11}=\frac{3}{5}-\frac{4}{3}\)
\(\Rightarrow\left(x\div\frac{8}{3}-\frac{1}{2}\right).\frac{18}{11}=\frac{-11}{15}\)
\(\Rightarrow x\div\frac{8}{3}-\frac{1}{2}=\frac{-11}{15}\div\frac{18}{11}\)
\(\Rightarrow x\div\frac{8}{3}-\frac{1}{2}=\frac{-121}{270}\)
\(\Rightarrow x\div\frac{8}{3}=\frac{-121}{270}+\frac{1}{2}\)
\(\Rightarrow x\div\frac{8}{3}=\frac{7}{135}\)
\(\Rightarrow x=\frac{7}{135}.\frac{8}{3}\)
\(\Rightarrow x=\frac{56}{405}\)
Vậy \(x=\frac{56}{405}\)
e) \(1\frac{1}{3}.2\frac{2}{4}\div\frac{5}{6}.1\frac{1}{11}=11-5\div x\)
\(\Rightarrow\frac{4}{3}.\frac{5}{2}\div\frac{5}{6}.\frac{12}{11}=11-5\div x\)
\(\Rightarrow\frac{10}{3}\div\frac{5}{6}.\frac{12}{11}=11-5\div x\)
\(\Rightarrow4.\frac{12}{11}=11-5\div x\)
\(\Rightarrow11-5\div x=\frac{48}{11}\)
\(\Rightarrow5\div x=11-\frac{48}{11}\)
\(\Rightarrow5\div x=\frac{73}{11}\)
\(\Rightarrow x=5\div\frac{73}{11}\)
\(\Rightarrow x=\frac{55}{73}\)
Vậy \(x=\frac{55}{73}\)
a) (1,5 * 1,9 - x - 0,5) : 0,25 = 7,5 : 0,125
(2,85 - x - 0,5) : 0,25 = 60
(2,85 - x - 0,5) = 60 x 0,25
(2,85 - x - 0,5) = 15
2,35 - x = 15
x = 2,35 - 15
x = -12,65
\(71+52,5\times4=\frac{x+140}{x}+210\)
\(71+210=\frac{x+140}{x}+210\)
\(=>\frac{x+140}{x}=71\)
\(71=\frac{142}{2}\)\(\Rightarrow x=142-140=2\)
a: \(x\times\dfrac{3}{4}+x:4=\dfrac{3}{7}\)
=>\(x\times\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=\dfrac{3}{7}\)
=>\(x\times\dfrac{4}{4}=\dfrac{3}{7}\)
=>\(x=\dfrac{3}{7}\)
b: \(\left(\dfrac{7}{20}+\dfrac{1}{2}-x\right):\dfrac{64}{15}=\dfrac{9}{128}\)
=>\(\left(\dfrac{7}{20}+\dfrac{10}{20}-x\right)=\dfrac{9}{128}\times\dfrac{64}{15}\)
=>\(\dfrac{17}{20}-x=\dfrac{1}{2}\times\dfrac{3}{5}=\dfrac{3}{10}\)
=>\(x=\dfrac{17}{20}-\dfrac{3}{10}=\dfrac{17}{20}-\dfrac{6}{20}=\dfrac{11}{20}\)
c: \(1,5-\left(x:0,5+\dfrac{5}{8}\right):\dfrac{3}{2}=0\)
=>\(\left(x:0,5+\dfrac{5}{8}\right):\dfrac{3}{2}=1,5\)
=>\(x:0,5+\dfrac{5}{8}=1,5\times\dfrac{3}{2}=\dfrac{9}{4}\)
=>\(x:0,5=\dfrac{9}{4}-\dfrac{5}{8}=\dfrac{13}{8}\)
=>\(x=\dfrac{13}{8}\times\dfrac{1}{2}=\dfrac{13}{16}\)