Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Phân tích đa thức thành nhân tử:
a) \(x^2-x-6\)
\(=x^2-3x+2x-6\)
\(=x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) \(x^4+4x^2-5\)
\(=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
c) \(x^3-19x-30\)
\(=x^3+5x^2+6x-5x^2-25x-30\)
\(=x\left(x^2+5x+6\right)-5\left(x^2+5x+6\right)\)
\(=\left(x^2+5x+6\right)\left(x-5\right)\)
\(=\left(x^2+2x+3x+6\right)\left(x-5\right)\)
\(=\left[x\left(x+2\right)+3\left(x+2\right)\right]\left(x-5\right)\)
\(=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
3. Phân tích thành nhân tử:
c) \(81x^4+4\)
\(=\left(9x^2\right)^2+2.9x^2.2+2^2-36x^2\)
\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\)
d) \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right) \left(x^3-x^2+1\right)\)
1b) Ta có: 3n+2 - 2n+2 +3n -2n
= 3n.32-2n.22 + 3n - 2n
= (3n.9+3n)-(2n.4+2n)
= 3n.(9+1)-2n.(4+1)
= 3n.10-2n-1.2.5
=3n.10-2n-1.10=10.(3n-2n-1) \(⋮\) 10
Vậy: .............( đpcm)
2) Để A có giá trị nguyên thì: 5x-2 \(⋮\) x-2
\(\Leftrightarrow\) 5x-10+8 \(⋮\) x-2
\(\Leftrightarrow5\left(x-2\right)+8⋮x-2\)
Vì: 5(x-2) \(⋮\) x-2 nên 8 \(⋮\) x-2
\(\Rightarrow x-2\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Rightarrow x\in\left\{3;1;4;0;6;-2;10;-6\right\}\)
Vậy:.............
\(3xy-5=x^2+2y\Leftrightarrow xy-x^2+2xy-2y=5\Leftrightarrow x\left(y-x\right)+2y\left(x-y\right)=5\Leftrightarrow\left(2y-x\right)\left(x-y\right)=5\)
\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=3^n\left(9+1\right)-2\left(2^{n+1}+2^{n-1}\right)\left(n\in Z^+\right)=3^n.10-2\left(4.2^{n-1}+2^{n-1}\right)=3^n.10-10.2^{n-1}=10\left(3^n-2^{n-1}\right)⋮10\)
b) 3n+2-2n+2+3n-2n = (3n+2+3n)+(-2n+2-2n) = (3n.32+3n)+[-2n.(-2)2-2n
= 3n (9+1) -2n(4+1)
=3n . 10 - 2n.5
= 3n.10 - 2n-1.10
= 10 ( 3n-2n-1) \(⋮\) 10
Vậy ...
Bài 1: Bài này tớ làm không đảm bảo đúng 100% nên nếu có gì sai sót mong bạn thông cảm
a) Nếu F(x) = G(x)
\(\Rightarrow ax+b-mx-n=0\)
\(\Rightarrow x\left(a-m\right)+\left(b-n\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(a-m\right)=0\\b-n=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-m=0\\b=n\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=m\\b=n\end{matrix}\right.\)
b) Nếu F(x) = G(x)
\(\Rightarrow ax^2+bx+c-mx^2-nx-p=0\)
\(\Rightarrow x^2\left(a-m\right)+x\left(b-n\right)+\left(c-p\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\left(a-m\right)=0\\x\left(b-n\right)=0\\c-p=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-m=0\\b-n=0\\c-p=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=m\\b=n\\c=p\end{matrix}\right.\)
Bài 2:
a) \(A\left(x\right)=0\)
\(\Leftrightarrow2\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(3-x\right)=0\)
\(\Leftrightarrow2.\dfrac{1}{3}x-2.\dfrac{1}{2}-\dfrac{1}{2}.3+\dfrac{1}{2}x=0\)
\(\Leftrightarrow\dfrac{2}{3}x-1-\dfrac{3}{2}+\dfrac{1}{2}x=0\)
\(\Leftrightarrow\dfrac{7}{6}x-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{7}{6}x=\dfrac{5}{2}\)
\(\Leftrightarrow x=\dfrac{15}{7}\)
b) Nếu B (x) = 0
\(\Leftrightarrow\left(2x-5\right)\left(x^2-\dfrac{9}{16}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\x^2-\dfrac{9}{16}=0\\x^2+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\\x^2=\dfrac{9}{16}\\x^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{3}{4};x=-\dfrac{3}{4}\\x=1;x=-1\end{matrix}\right.\)
c) Nếu C(x) = 0
\(\Leftrightarrow x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2};x=-\sqrt{2}\end{matrix}\right.\)
d) Nếu D(x) = 0
\(\Leftrightarrow9x^2+16=0\)
\(\Leftrightarrow9x^2=-16\)
\(\Leftrightarrow x^2=-\dfrac{16}{9}\)
Vậy không tồn tại x thỏa mãn
e) Nếu M(x) = 0
\(\Leftrightarrow x^2+4x+4=0\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Mình chỉ biết A=5;B=2 còn N thì =25
Ta có:
AxBxAxNxBxN=A^2xB^2xN^2=(AxBxN)^2=10x25x50=12500
=> AxBxN=\(\sqrt{12500}=???????kochiadc\)