Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left(P\right):y=x^2\)
Ta có bảng
x | -2 | -1 | 0 | 1 | 2 |
y | 4 | 1 | 0 | 1 | 4 |
Vậy đồ thị hàm số \(y=x^2\) là một parabol lần lượt đi qua các điểm
\(\left(-2;4\right),\left(-1;1\right),\left(0;0\right),\left(1;1\right),\left(2;4\right)\)
Bạn tự vẽ nhé
\(\left(d\right):y=-2x+3\)
Cho \(y=0\Rightarrow x=\dfrac{3}{2}\Rightarrow A\left(\dfrac{3}{2};0\right)\in Ox\)
Cho \(x=0\Rightarrow y=3\Rightarrow B\left(0;3\right)\in Oy\)
Vẽ đường thẳng AB ta được đths \(y=-2x+3\)
Bạn tự bổ sung vào hình vẽ nhé
b) Xét PTHĐGĐ của \(\left(P\right),\left(d\right)\) là nghiệm của phương trình
\(x^2=-2x+3\\ \Leftrightarrow x^2+2x-3=0\)
Xét \(a+b+c=1+2-3=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Với `x=1 => y=x^2 = 1`
Với `x=2 => y=x^2 = 4`
Vậy tọa độ giao điểm của \(\left(P\right),\left(d\right)\) là 2 điểm \(\left(1;1\right)\) và \(\left(2;4\right)\)
\(\text{PT hoành độ giao điểm: }-x+4=3x\Leftrightarrow x=1\Leftrightarrow y=3\Leftrightarrow A\left(1;3\right)\\ \text{Vậy }A\left(1;3\right)\text{ là giao 2 đths}\)
Lời giải:
a. Bạn tự vẽ đồ thị
b. PT hoành độ giao điểm:
$2x-3=\frac{1}{2}x$
$\Rightarrow x=2$
Khi đó: $y=\frac{1}{2}x=\frac{1}{2}.2=1$
Vậy tọa độ giao điểm của 2 đường thẳng là $(2;1)$
a, tự vẽ
b, Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=-x\Leftrightarrow3x=-3\Leftrightarrow x=-1\Rightarrow y=1\)
Vậy \(x=-1;y=1\)
b: Tọa độ giao là:
2x+5=x+3 và y=x+3
=>x=-2 và y=1
c: Thay x=-2 và y=1 vào (d), ta được:
m-3-6=1
=>m=10
b, PT hoành độ giao điểm là \(\dfrac{3}{2}x-2=-2x+5\Leftrightarrow\dfrac{7}{2}x=7\Leftrightarrow x=2\Leftrightarrow y=1\)
\(\Leftrightarrow A\left(2;1\right)\)
Vậy A(2;1) là tọa độ giao điểm 2 đths
a:
b: Phương trình hoành độ giao điểm là:
-2x+1=x-5
=>-2x-x=-5-1
=>-3x=-6
=>x=2
Thay x=2 vào y=x-5, ta được:
\(y=2-5=-3\)
Vậy: (d1) cắt (d2) tại A(2;-3)
c: (d1): y=x-5
=>x-y-5=0
Khoảng cách từ O(0;0) đến (d1) là:
\(d\left(O;\left(d1\right)\right)=\dfrac{\left|0\cdot1+0\cdot\left(-1\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{\sqrt{2}}\)
(d2): y=-2x+1
=>y+2x-1=0
=>2x+y-1=0
Khoảng cách từ O đến (d2) là:
\(d\left(O;\left(d2\right)\right)=\dfrac{\left|0\cdot2+0\cdot1-1\right|}{\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{5}}\)
a) tự vẽ
b) Ta có phương trình hoành độ giao điểm của đồ thị hàm số (P) và đường thẳng (d) là:
2x2 = x + 3
<=> 2x2 - x - 3 = 0
Do a - b + c = 2 + 1 - 3 = 0
=> phương trình có 2 nghiệm phân biệt x1 = -1; x2 = 3/2
Với x = -1 => y = -1 + 3 = 2 => tọa độ giao điểm là (-1;2)
x = 3/2 => y = 3/2 + 3 = 9/2 => tọa độ giao điểm là (3/2; 9/2)