Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(0,25\right)^{-1}.\left(\frac{1}{4}\right)^{-2}.\left(\frac{4}{3}\right)^2.\left(\frac{5}{4}\right)^{-1}.\left(\frac{2}{3}\right)^{-3}\)
\(\Rightarrow A=4^1.4^2.\frac{16}{9}.\frac{4}{5}\frac{27}{8}\)
\(\Rightarrow A=\frac{64}{1}.\frac{16}{9}.\frac{4}{5}.\frac{27}{8}\)
\(\Rightarrow A=\frac{1536}{5}\)
Vậy \(A=\frac{1536}{5}\)
Câu 1:
a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)
\(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)
\(=\frac{1}{2}-\frac{4}{3}\)
\(=-\frac{5}{6}\)
b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=7+\frac{1}{12}+3-\frac{1}{12}-5\)
\(=5\)
Câu 2:
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)
\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
Vậy -1\(\le\)x<7
\(A=\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-4\dfrac{1}{5}\right)-\dfrac{11}{31}\\ =\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{31}{11}\\ =\left(\dfrac{30}{6}+\dfrac{15}{6}\right):\left(\dfrac{95}{30}-\dfrac{126}{30}\right)-\dfrac{31}{11}\\ =\dfrac{45}{6}:\dfrac{-21}{30}-\dfrac{31}{11}\\ =\dfrac{15}{2}\times\dfrac{-10}{7}-\dfrac{31}{11}=-\dfrac{75}{7}-\dfrac{31}{11}=-\dfrac{825}{77}-\dfrac{217}{77}=\dfrac{-1042}{77}\)
\(B=\left(-6\right).10:\left[-0,25+\dfrac{1}{2}:\left(-2\right)\right]+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{4}+\dfrac{1}{2}.\dfrac{-1}{2}\right)+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{4}+\dfrac{-1}{4}\right)+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{2}\right)+1\dfrac{3}{4}=120+1\dfrac{3}{4}=121\dfrac{3}{4}\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)
\(=\frac{1}{2003}\)
b, \(2^n\left(2^{-1}+4\right)=9\cdot2^5\)
=> \(2^n\cdot\frac{9}{2}=9\cdot2^5\)
=> \(2^n=2^6\)
Vậy \(n=6\left(tm\right)\)
a, \(A=4\cdot16\cdot\frac{9}{16}\cdot\frac{4}{5}\cdot\frac{27}{8}=\frac{486}{5}=97,2\)