Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=x3+x2y−2x2−xy−y2+3y+x−1
=(x3+x2y−2x2)−(xy+y2−2y)+y+x−1
=x2(x+y−2)−y(x+y−2)+(y+x−2)+1
=x2.0−y.0+0+1
=1
N=x3−2x2−xy2+2xy+2y−2x−2
=(x3−2x2+x2y)−(x2y+xy2−2xy)+2y+2x−4−4x+2
=x2(x−2+y)−xy(x+y−2)+2(y+x−2)−4x+2
=x2.0−xy.0+2.0−4x+2
=2−4x
bài 1.
a) (4x3 - 2)(2x3- x + \(\dfrac{5}{8}\))
= 8x6 - 4x4 + \(\dfrac{5}{2}\)x3 - 4x3 + 2x - \(\dfrac{5}{4}\)
b) (x2y2 - xy + y)(x - y)
= x3y2 - x2y + xy - x2y3 + xy2 - y2
c) (x + 2y)(x2 - 2xy + y2)
= x3 + 8y3
d) (7x - 3)(7x + 3) + (2x - 3)2
= 49x2 - 9 + 4x2 - 12x + 9
= 53x2 - 12x
Bài 2.
a) 4(3x - 1) - 2(5 - 3x) = 24
12x - 4 - 10 + 6x - 24 = 0
18x - 38 = 0
\(\Rightarrow\) 18x = 38
\(\Rightarrow\) x = \(\dfrac{19}{9}\)
b) 4x2 - 9 = 0
\(\Rightarrow\) 4x2 = 9
\(\Rightarrow\) x2 = \(\dfrac{9}{4}\)
\(\Rightarrow\) x = \(\pm\dfrac{3}{2}\)
vậy x = 3/2 hoặc x = -3/2
c) x3 - 25x = 0
x(x2 - 25) = 0
x(x - 5)(x + 5) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
d) (x2 + 4)2 - 16x2 = 0
(x2 + 4 - 4x)(x2 + 4 + 4x) = 0
\(\Rightarrow\) (x - 2)2.(x + 2)2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Bài 3.
a) x(x + y) + y(x + y)
Ta có:
x(x + y) + y(x + y)
= (x + y)(x + y)
= (x + y)2
Thay x = 2004 và y = -2003 vào biểu thức đại số ta có:
[2004 + (-2003)]2 = 12
= 1
b) x2 + xy - xz - yz
Ta có:
x2 + xy - xz - yz
= (x2 + xy) - (xz + yz)
= x(x + y) - z(x + y)
= (x - z)(x + y)
Thay x= 6,5; y = 3,5 và z = 37,5 vào biểu thức đại số, ta có:
(6,5 - 37,5)(6,5 + 3,5)
= -31 . 10
= -310
c) x2 - 6xy + 9y2
ta có:
x2 - 6xy + 9y2
= (x - 3y)2
Thay x = 14 và y = -2 vào biểu thức đại số, ta có:
[14 - (-2)]2 = (14 + 2)2
= 162 = 256
Nhớ tik mik nhé không lần sau mik ko giúp đâu
có j ko hỉu cứ bình luận ở dưới
Bài 1
A, x3-25x=0
B, 4x2-9-x(2x-3)=0
Bài 2
A, (7x . 2x-5+x-3)(x+2)-16
B, (x+y)2+(3x-y)2 -2(y+3)(y-3)
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)
\(A=\left(x-y+1\right)^2+36\)
Thay x - y = 7 vào A
\(A=\left(7+1\right)^2+36\)
\(A=8^2+36\)
\(A=64+36\)
\(A=100\)
b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)
\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)
Thay x - y = 7 vào B
\(B=7^3+7^2-9\)
\(B=343+49-9\)
\(B=383\)
c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)
\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)
\(C=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay x - y = 7 vào C
\(C=7^3-7^2\)
\(C=343-49\)
\(C=294\)
d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)
\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay x - y = 7 vào D
\(D=7^3+7^2-95\)
\(D=343+49-95\)
\(D=297\)
a)
Ta có :
\(x+y=3\)
\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\Leftrightarrow2xy=4\Rightarrow xy=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.\left(5-2\right)=9\)
b)
Ta có :
\(x-y=5\)
\(x^2+y^2=15\Leftrightarrow\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\Rightarrow xy=-5\)
=> \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(5\right)\left(15+-5\right)=50\)
1a) 8xy(8-12x+6x*x-x*x*x)
chú thích x*x là x bình phương
x*x*x là x lập phương
2. a) 3x (x-5)- (x-1)(2+3x)=30
3x*x-15x-2x-3x*x+2+3x=30
14x=28
x=2
b) (x+2)(x-3)-(x-2)(x+5)=0
x*x-3x+2x-6-x*x-5x+2x+10=0
2x=-4
x=-2
còn mấy bài còn lại mình không biết
a) \(a^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\) (*)
Ta có:
\(a-b=1\)
\(\Rightarrow\left(a-b\right)^2=1\)
\(\Rightarrow a^2-2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1+2ab\left(1\right)\)
Ta lại có: \(ab=6\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=1.\left(1+2ab+ab\right)\)
\(=1+3ab\)
\(=1+3.6\)
\(=19\)
b) \(a^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)(*)
Ta có:
\(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)
Ta lại có: \(ab=-1\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=1\left(1-2ab+ab\right)\)
\(=1-ab\)
\(=1-\left(-1\right)\)
\(=2\)
c) \(2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)
\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3\left(a^2+b^2\right)\) (*)
Ta có:
\(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)
Ta lại có: \(ab=-2\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=2.1\left(1-2ab-ab\right)-3\left(1-2ab\right)\)
\(=2\left(1-3ab\right)-3\left(1-2ab\right)\)
\(=2\left[1-3.\left(-2\right)\right]-3\left[1-2.\left(-2\right)\right]\)
\(=2.7-3.5\)
\(=29\)
d) \(x^3+y^3+3xy\)
\(=x^3+y^3+3xy\left(x+y\right)\) ( Vì x + y = 1 nên GTBT không đổi )
\(=\left(x+y\right)^3\)
\(=1\)
e) \(x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\) ( Vì x - y = 1 nên GTBT không đổi )
\(=\left(x-y\right)^3\)
\(=1\)
A) \(\left(x+y\right)^2=\left(x-y\right)^2+4xy=5^2+4.3=37\)
B)
a) \(\left(x+3\right)^2-\left(x-2\right)^2=11\)
\(\Leftrightarrow\)\(x^2+6x+9-\left(x^2-4x+4\right)-11=0\)
\(\Leftrightarrow\)\(x^2+6x+9-x^2+4x-4-11=0\)
\(\Leftrightarrow\)\(10x-6=0\)
\(\Leftrightarrow\)\(10x=6\)
\(\Leftrightarrow\)\(x=\frac{3}{5}\)
Vậy...
b) \(25x^2-9=0\)
\(\Leftrightarrow\)\(\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
Vậy...