K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018
bạn ơi giúp mình trả lời câu này với....mình đang cần gấp..cám ơn nhé
2 tháng 2 2020

2. Ta có: n + S ( n ) + S ( S (n) ) = 60

Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) ) 

=> n + n + n  \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60

=> 3n \(\ge\)60

=> n \(\ge\)20

=> 20 \(\le\)\(\le\)60 

Đặt: n = \(\overline{ab}\)

=> \(2\le a\le6\)

và \(2+0\le a+b\le5+9\)

=> \(2\le a+b\le14\)

a + b234567891011121314
\(\overline{ab}\)56545250484644424047454341
 loạiloạiloạitmloạiloạitmloạiloạitmloạiloạiloại

Vậy n = 50; n = 44 hoặc n = 47

2 tháng 2 2020

1. Ta có: a + 3c = 2016 ; a + 2b = 2017

=> a + 3c + a + 2b = 2016 + 2017

=> 2a + 2b + 2c + c = 4033

=> 2 ( a + b + c ) = 4033 - c 

mà a, b, c không âm 

=> c \(\ge\)0

Để P = a + b + c  đạt giá trị lớn nhất 

<=> 2 ( a + b + c ) đạt giá trị lớn nhất

<=> 4033 - c đạt giá trị lớn nhất 

<=> c đạt giá trị bé nhất

=> c = 0

=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2

Vậy max P = 0 + 2016 + 1/2 = 4033/2

23 tháng 12 2018

Bạn xem bài làm ở đây:

https://olm.vn/hoi-dap/detail/40718880788.html

Học tốt

1 tháng 8 2019

Câu c bạn tham khảo tại đây:

Câu hỏi của Edogawa Conan - Toán lớp 6 - Học toán với OnlineMath

29 tháng 11 2021

bbbbbbbbbbbbbbbbbbbbbbb

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8