K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

Tham khảo: Cho p là số nguyên tố lớn hơn 3. CMR (p – 1)(p + 1) chia hết cho 24

20 tháng 7 2016

a) Đặt phân số trên là M

Để M là số tự nhiên thì

19n+7 chia hết cho 7n+11

<=>7(19n+7)-19(7n+11) chia hết cho 7n+11

<=>133n+49-133n-209 chia hết cho 7n+11

<=>-160 chia hết cho 7n+11

\(\Leftrightarrow7n+11\in\left\{1;2;4;5;8;10;16;20;32;40;80;160;-1;-2;-4;-5;-8;-10;-16;-20;-32;-40;-80;-160\right\}\)

Mà n là số tự nhiên

=> 7n+11\(\ge\)11

Vậy các giá trị của 7n+11 là 16;20;32;48;80;160

Mặt khác 7n+11 chia 7 dư 4

=> Các giá trị 16;20;48;80;160 bị loại vì chia 7 có số dư \(\ne\)4

=> 7n+11=32

=>n=3

Vậy khi n=3 thì M=2

b)   P là số nguyên tố lớn hơn 3

=> P không chia hết cho 2 cho 3 

Ta có :P không chia hết cho 2

=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)

Mặt khác vì  P không chia hết cho 3

=>p=3k+1 hoặc 3k+2

Nếu P= 3k +1

=>P-1 =3k +0chia hết cho 3 => (P-1)(P+1) chia hết cho 3

Nếu P= 3k+2

=> P+1=3k +3 chia hết cho 3 => (P-1)(P+1) chia hết cho 3

=> Với mọi p là só nguyên tố lớn hơn 3 thì (p+1)(p-1) chia hết cho 3 (2)

Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 và 3

Mà (8;3)=1

=>(P-1)(P+1) chia hết cho 8x3=24 (đpcm)

Bài 2: 

\(B=x^2+2xy^2-3xy-2\)

Thay x=2 và y=3 vào B, ta được:

\(B=2^2+2\cdot2\cdot3^2-3\cdot2\cdot3-2=20\)

Thay x=2 và y=-3 vào B, ta được:

\(B=2^2+2\cdot2\cdot\left(-3\right)^2-3\cdot2\cdot\left(-3\right)-2=56\)

23 tháng 6 2015

N = ( 19n + 17 ) : ( 7n + 11 ) 
=(14n+22-5)/(7n+11) = 2 + ( 5n - 5 ) / ( 7n + 11 ) 
với mọi n tự nhiên 
5n-5<7n+11=>(5n-5)/(7n+11)<1 
=>S={} 

bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm

26 tháng 1 2016

mấy bạn chỉ giùm mình với

 

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

các bạn làm ơn giúp mik

16 tháng 3 2017

Đặt A=102+18n-1

=10n-1+18n

=9999...9(n c/số 9)+18n

=9.11111...1(n c/số 1)+9.2n

=9(1111...1(n c/số 1+2n)

mà 111...1(n c/số 1)=n+9q

=>A=9.(9q+n+2n)

=>A=9(9q+3n)

=9.3.(3q+n)

=27(3q+n)

=>\(A⋮27\)

vậy...(đccm)

mấy bài sau dễ òi

bn tự làm nhé

16 tháng 3 2017

Nếu dễ thì bạn làm nốt đi. Mà bạn học lớp nào và ở đâu?

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do