Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(p=3\Rightarrow8p+1=25\) không là số nguyên tố
Với \(p>3\Rightarrow p\) không chia hết cho 3 nên \(p=3k+1\) hoặc \(p=3k+2\)
- Với \(p=3k+1\Rightarrow8p+1=24k+9=3\left(8k+3\right)⋮3\) nên không là số nguyên tố
- Với \(p=3k+2\Rightarrow8p-1=24k+15=3\left(8k+5\right)⋮3\) nên không là số nguyên tố
Vậy \(8p-1\) và \(8p+1\) luôn có ít nhất 1 số là hợp số, hay 2 số đã cho không đồng thời là số nguyên tố
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
a)
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
a )
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
nhé !
.........
còn câu b ,c chưa nghĩ ra
Nếu P=2 => 8P-1=8.2-1=15
8P+1=8.2+1=17 (thỏa mãn)
Nếu P=3 =>8P-1=8.3-1=23
8P+1=8.3+1=25 (thỏa mãn)
Nếu p>3 thì P=3K+1 hoặc 3K+2
+Với P=3K+1=(8.3K+1-1)=(24K+0)=24k chia hết cho 3(hợp số)
+Với P=3k+2=(8.3k+2+1)=(24k+3) chia hết cho 3 (hợp số)
Vậy 8P+1 và 8P-1 không đồng thời là số nguyên tố.
8p - 1 va 8p + 1 khong dong thoi la so nguyen to vi:
p la SNT nen p co the = 2 ; 3; 5 ; 7 ; 11;...
8.3 - 1 = 20
8.3 + 1 = 25 va 20, 25 la hop so