K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2019

1. Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath

9 tháng 12 2019

2. Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath

22 tháng 3 2015

bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)                                                                                                                                                                                                                       

2 tháng 8 2016

ban tran xuan quynh tra loi dung roi

13 tháng 3 2018

mik hieu dc 3 cau roi

31 tháng 1 2015

3^n+2-2^n+2+3^n-2^n=3^n.9-2^n.4+3^n-2^n

=3^n.(10-1)-2^n(5-1)+3^n-2^n=3^n.10-3^n-10.2^n-1+2^n-2^n

=3^n.10+10.2^n-1 chia het 10

 

31 tháng 10 2017

Nguyễn Thái Sơn

11 tháng 11 2017

Bài thi vao bài nay thi dê quá,thầy Thanh tớ dạy rôihiha

4 tháng 11 2018

sao ko ai lam the

20 tháng 7 2019

1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)

Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)

Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)

2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)

Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)

Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0

Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)

\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)

Như vậy, \(n< 5\)

Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)

Với \(n=2;1!+2!=5\left(KTM\right)\)

Với \(n=3;1!+2!+3!=9\left(TM\right)\)

Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)

Vậy n bằng 1 hoặc 3

3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)

Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố) 

\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)

\(\Leftrightarrow ab+b^2+bc+bd=pb\)

\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)

Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)

Vậy a+b+c+d là hợp số 

Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)

\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm) 

22 tháng 7 2019

Girl

Thank you =))