K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

a.Đặt n2+2006=a2(a\(\in\)Z)

=>2006=a2-n2=(a-n)(a+n) (1)

Mà (a+n)-(a-n)=2n chia hết cho 2

=>a+n và a-n có cùng tính chẵn lẻ 

+ TH1:a+n và a-n cùng lẻ => (a-n)(a+n) lẻ, trái với (1)

+ TH2 :a+n và a-n cùng chẵn => (a-n)(a+n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b.Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n=3k+1 hoặc n=3k+2 (k\(\in\)N*)

+ n=3k+1 thì n2+2006=(3k+1)2+2006=9k2+6k+2007 chia hết cho 3 và lớn hơn 3

=>n2+2006 là hợp số

+ n=3k+2 thì n2+2006=(3k+2)2+2006=9k2+12k+2010 chia hết cho 3 và lớn hơn 3

=>n2+2006 là hợp số

Vậy n2+2006 là hợp số

7 tháng 2 2016

bai toan nay kho 

1 tháng 7 2015

http://hocmai.vn/file.php/389/Bai_tap_tu_luyen/De_thi_HSG/Dap_an_De_thi_HSG_lop_6_so_1.pdf Mình tặng bạn nhé!! ^^

1 tháng 7 2015

http://hocmai.vn/file.php/389/Bai_tap_tu_luyen/De_thi_HSG/Dap_an_De_thi_HSG_lop_6_so_1.pdf

31 tháng 1 2016

a) vì n là số nt > 3 nên n là số lẻ

=> n2 là số lẻ => n2 là hợp số (1)

mà 2006 > 2 => 2006 là hơp số (2)

=> n2+ 2006 là hợp số

KL: n+2006 là hợp số

1 tháng 2 2016

n là số nguyên tố lớn hơn 3 => n=3k+1 hoặc n=3k+2  (k la so tu nhien)

Nếu n=3k+1 => n^2+2006=(3k+1)^2+2006=9k^2+6k+1+2006=9k^2+6k+2007 =3(3k^2+2k+669) chia hết cho 3 và >3 nên là hop so

Nếu n=3k+2 =>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010  chia hết cho 3 và > 3 nen là hop so

 

 

bài 2

 

n^2+2006=a^2  => 2006=a^2-n^2=(a-n)(a+n)

ta co n-a-(n+a)=-2a là số chẵn nên a-n và a+n cùng tính chẵn lẻ

ta thấy 2006 là số chẵn nên a-n và a+n cùng chẵn nên (a+n)(a+n) chia hết cho 4 mà 2006 ko chia hé t cho 4 nên ko có x

31 tháng 3 2016

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

31 tháng 3 2016

b)

Đặt n2 + 2006 = a2 (a $∈$∈Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k$∈$∈N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

a)

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

26 tháng 1 2017

Để n2+2006 là số chính phương <=>n2+2006=k2<=>k2-n2=2006

<=> (k+n)(k-n)=2006=2006.1=1.2006=2.1003=1003.2=........

Bạn tự giải tiếp với từng n,k thuộc dãy trên để tìm ra n

16 tháng 6 2016

a)Do n 2 là số chính phương nên chia 4 chỉ có thể dư 0 hoặc 1

Mà 2006 chia 4 dư 2 => n 2 + 2006 chia 4 chỉ có thể dư 2 hoặc 3, vô lí

Vậy không tìm được giá trị của n thỏa mãn đề bài

b) Do n nguyên tố lớn hơn 3 nên n không chia hết cho 3 => n 2 không chia hết 3 => n 2 chia 3 dư 1, mà 2006 chia 3 dư 2 => n 2 + 2006 chia hết cho 3

Mà 1 < 3 < n 2 + 2006 nên n 2 + 2006 là hợp số

15 tháng 6 2016

Bạn xem ở đây nhé!

http://olm.vn/hoi-dap/question/90409.html

a) Không tồn tại n để n2 + 2016 là số chính phương

b) n2 + 2006 là hợp số với mọi số nguyên tố n>3. 

9 tháng 1 2017

Đặt n^2 + 2006 = a^2 ( a thuộc Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết 

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k thuộc N*)

+) n =3k+1 thì n^2 + 2006 = (3k+1)^2 + 2006 chia hết cho 3 và lớn hơn 3

=> n^2 + 2006 là hợp số

+) n= 3k+2 thì n^2 + 2006 = (3k+2)^2 + 2006 chia hết cho 3 và lớn hơn 3

=> n^2 + 2006 là hợp số 

Vậy n^2 + 2006 là hợp số

Duyệt đi , chúc bạn hk giỏi

9 tháng 3 2017

Vậy n^2+2006 là hợp số.

15 tháng 11 2015

Bạn vào câu hỏi tương tự nha !