K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: TH1: n=3k+1

\(n^2+2006=\left(3k+1\right)^2+2006\)

\(=9k^2+6k+1+2006\)

\(=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)

TH2: n=3k+2

\(n^2+2006=\left(3k+2\right)^2+2006\)

\(=9k^2+12k+2010=3\left(3k^2+4k+670\right)⋮3\left(2\right)\)

Từ (1),(2) suy ra \(n^2+2006\) là hợp số

5 tháng 8 2016

Do n nghuyên tố > 3 => n không chia hết cho 3 => n2 không chia hết cho 3

=> n2 chia 3 dư 1; 2006 chia 3 dư 2

=> n2 + 2006 chia hết cho 3

Mà 1 < 3 < n2 + 2006

=> n2 + 2006 là hợp số

5 tháng 8 2016

n là SNT lớn hơn 3

=> n ko chia hết cho 3

=>n2 chia 3 dư 1

=>n2=3k+1

=>n2+2006=3k+1+2006=3k+2007 chia hết cho 3 (vì 3k và 2007đeều chia hết cho 3)

=>n2+2006 là hợp số

a/ gọi n^2+2006=a^2(a thuộc Z)

=>2006=a^2-n^2

=>2006=(a-n)(a+n)

vì tích a-n và a+n là 1 số chẵn nên trong 2 số a-n và a+n phải có ít nhất 1 số chẵn(1)

mặt khác, (a-n)+(a-n)=2a

2a là 1 số chẵn nên a-n và a+n có cùng tính chăn lẻ(2)

từ (1) và (2) suy ra a-n và a+n đều là 2 số chẵn

đặt a-n=2x;a+n=2y(x,y thuộc Z)

=>(a-n)(a-n)=2006 hay 2x.2y=2006

=>4xy=2006

vì x,y thuộc Z nên 2006 chia hết cho 4( vô lí, vì 2006 ko chia hết cho 4)

vậy ko có số nguyên nào thõa mãn đề bài

b, vì n là số nguyên tố và n>3 nên n ko chia hết cho 3=>n=3k+1 hoặc n=3k+2

nếu n=3k+1,khi đó: n^2+2006=(3k+1)^2+2006=9k^2+6k+2007 chia hết cho 3 và n^2+2006 lớn hơn 3 nên n^2+2006 là hợp số

nếu n=3k+2, khi đó: n^2+2006=(3k+2)^2+2006=9k^2+12k+2010 chia hết cho 3 và lơn hơn 3 nên n^2+2006 là hợp số

vậy nếu n>3 thì n^2+2006 là hợp số

 

2 tháng 2 2016

tôi mới học lớp 5

26 tháng 5 2018

a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)

\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )

Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2

=> a + n và a - n có cùng tính chẵn lẻ

TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )

TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1 

Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương

b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))

TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

Vậy \(n^2+2006\)là hợp số

14 tháng 2 2016

câu hỏi tương tự nha bạn

14 tháng 2 2016

bai toan nay kho @gmail.com

14 tháng 10 2015

a) Không có số nào thỏa mãn để bài

b) Hợp số

24 tháng 3 2015

a) n ko có giá trị nào

b) n^2 + 2006 là hợp số

12 tháng 5 2017

A n ko co gia ch nao minh chi biet con a thoi