Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a)x.(x+3)=0
=> x=0 hoặc x+3=0
ta có: x+3=0
x = -3
Vậy x=0 hoặc x=-3
b) (x-2). (5-x) = 0
=> x-2=0 hoặc 5-x =0
TH1
x-2=0
x =2
TH2
5-x =0
x =5
Vậy x=5 hoặc x=2
Bài 2
a) Để A có GTNN thì | x: 9| + |y-5| < 0
=> A=1890 +|x:9|+ | y-5| < 1890
Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0
a, A =I x - 3I +10
\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc bằng 0 vs mọi x)
Dấu ''='' xảy ra khi x-3=0
<=>x = 3
Vậy giá trị nhỏ nhất của A là 10 khi x = 3
b, \(B=-7+\left(x-1\right)^2\)
\(\Rightarrow B\ge-7\forall x\)
Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)
Vậy giá trị nhỏ nhất của B là -7 khi x=1
c, C= -3 - I x -2I
\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2
Vây giá trị lớn nhất của C là - 3 khi x = 2.
d, \(D=15-\left(x-2\right)^2\)
\(\Rightarrow D\le15\)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2
Vây giá trị lớn nhất của D là 15 khi x = 2
Ta có : A = | x - 3 | + 10 > 0
Vì | x - 3 |\(\ge\)0
Dấu = Xảy ra <=> x = 3
Vậy gtnn của A = 10 <=> x = 3
Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)
\(\Rightarrow A=\left|x-3\right|+10\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin =10 khi và chỉ khi x = 3
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmin = -7 khi và chỉ khi x = 1
Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Cmax = -3 khi và chỉ khi x = 2
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Dmax = 15 khi và chỉ khi x = 2
Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)
GTNN của A là 25 khi và chỉ khi x=5
\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)
GTNN của B là -16 khi x=2
b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)
GTLN của C là -5 khi và chỉ khi x=-3
\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)
GTLN của D là 14 khi và chỉ khi x = -1
a, Tìm giá trị nhỏ nhất của biểu thức:
A = \(|x-5|+25\)
Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất
\(\Rightarrow\)\(|x-5|\)nhỏ nhất
Mà \(|x-5|\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\) \(|x-5|\)\(=0\) (1)
Thay (1) vào A, ta có:
A = 0 + 25
A = 25
Vậy giá trị nhỏ nhất của A là 25
\(B=-16+\left(x-2\right)^2\)
Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất
\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất
Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\left(x-2\right)^2\)\(=0\) (2)
Thay (2) vào B, ta có :
B = \(-16+0\)
B = \(-16\)
Vậy giá trị nhỏ nhất của B là -16
1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)
\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)
Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5
2) a. \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)
\(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)
Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2
3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)
\(A^2=ab-bc-ac+bc\)
\(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)
\(A^2=0+a\left(b-c\right)\)
\(A^2=-20.\left(-5\right)=100\)
\(\Rightarrow A=10\)
Chúc bạn năm mới vui vẻ nha! Happy new year !
để A\(\in\)Z
=>5 chia hết x-2
=>x-2\(\in\){1,-1,5,-5}
=>x\(\in\){3,1,7,-3}
\(C=\frac{3x-19}{x-5}=\frac{3\left(x-5\right)-4}{x-5}=\frac{3\left(x-5\right)}{x-5}-\frac{4}{x-5}\in Z\)
=>4 chia hết x-5
=>x-5\(\in\){1,-1,2,-2,4,-4}
=>x\(\in\){6,4,7,3,9,1}
B tương tự nhé