Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=f\left(x\right)=x^2\left(k-9\right)+x\left(m^2-mk-6k^2\right)+5\)
Để hàm số là hàm bậc nhất thì \(\hept{\begin{cases}k-9=0\\m^2-mk-6k^2\ne0\end{cases}}\)
Tới đây bạn tự suy ra tiếp :)
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
a/ \(y=\left(k-9\right)x^2+\left(m^2-mk+6k^2\right)x+5\)
Để hàm số đã cho bậc nhất
\(\Leftrightarrow\left\{{}\begin{matrix}k-9=0\\m^2-mk+6k^2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=9\\m^2-9m+484\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=9\\m\in R\end{matrix}\right.\)
b/ Để hàm số là bậc nhất
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-3a+2=0\\a^2-2ab-2b^2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\\a^2-2ab-2b^2\ne0\end{matrix}\right.\)
- Với \(a=1\Rightarrow-2b^2-2b+1\ne0\Rightarrow b\ne\frac{-1\pm\sqrt{3}}{2}\)
- Với \(a=2\Rightarrow-2b^2-4b+4\ne0\Rightarrow b\ne-1\pm\sqrt{3}\)
c/\(y=\left(m^2-m-13\right)x^3+\left(2m-1\right)x+5\)
Để hàm số đã cho là bậc nhất và nghịch biến
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-m-13=0\\2m-1< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{1\pm\sqrt{53}}{2}\\m< \frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow m=\frac{1-\sqrt{53}}{2}\)