K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

19 tháng 10 2017

A=2^100-1

suy ra A<2^100

24 tháng 8 2016

bí rồi à?

24 tháng 8 2016

1.a)21

   b)321

   cách làm tương tự như bài trên

4 tháng 7 2017

bạn ghi thế này tớ k hiểu

4 tháng 7 2017

Tớ ghi giống y hệt đề mà

14 tháng 3 2019

\(S=1+3^1+3^2+...+3^{30}\)

\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)

\(S=1+3.10+3^2.10+...+3^{28}.10\)

Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0

\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1

=> Chữ số tận cùng của S là 1.

25 tháng 10 2016

các bạn làm ơn giúp mk với mk đang gấp lắmkhocroikhocroi

22 tháng 11 2016

1. 5n có 2 chữ số tận cùng là 25.

22 tháng 11 2016

1)Vì n>1\(\Rightarrow\)n có dạng 2k,2k+1(k\(\in\)N*)

Xét n có dạng 2k\(\Rightarrow5^{2k}\)=\(25^k\) có 2 chữ số tận cùng là 25

Xét n có dạng 2k+1

\(\Rightarrow5^{2k+1}\)=\(5^{2k}\cdot5=25^k\cdot5\)

\(25^k\) có 2 chữ số tận cùng là 25

\(\Rightarrow\)\(25^k\cdot5\) có 3 chữ số tận cùng là 125

\(\Rightarrow\)\(25^k\cdot5\) có 2 chữ số tận cùng là 25

Vậy trong trường hợp nào thì \(5^n\) luôn có 2 chữ số tận cùng là 25(n>1)