Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 phân số đó là a/b và c/d.
Theo bài ra ta có:
a/b - c/d = 3/196 (1)
a/c=3/5 => a= 3c/5 (2)
b/d=4/7 => b= 4d/7 (3)
Lấy (2) và (3) thay vào (1) ta có:
21c/20d - c/d =3/196
=>c/d =15/49
Thay vào (1) =>a/b = 9/28
=> Hai phân số cần tìm là 15/49 và 9/28
Gọi 2 phân số đó là a/b và c/d.
Theo đề bài ta có:
a/b - c/d = 3/196 (1)
a/c=3/5 => a= 3c/5 (2)
b/d=4/7 => b= 4d/7 (3)
Lấy (2) và (3) thay vào (1) ta có:
21c/20d - c/d =3/196
=>c/d =15/49
Thay vào (1) =>a/b = 9/28
=> hai phân số cần tìm là 15/49 và 9/28
+)Gọi 3 phân số phải tìm lần lượt là \(\frac{a}{b},\frac{c}{d},\frac{e}{f}\)với a,b,c,d,e,f là các số nguyên khác 0
+)Theo đề bài ta có: \(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}\)và \(\frac{b}{2}=\frac{d}{5}=\frac{f}{1}\)
\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=2\frac{13}{70}=\frac{153}{70}\) \(\left(1\right)\)
+) Ta có \(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}=x\left(x\in N\right)\)\(\Rightarrow a=5x;b=3x;c=2x\) \(\left(2\right)\)
+) Ta có \(\frac{b}{2}=\frac{c}{5}=\frac{d}{1}=y\left(y\in N\right)\)\(\Rightarrow b=2y;d=5y;f=1y\) \(\left(3\right)\)
Từ \(\left(1\right)\),\(\left(2\right),\left(3\right)\)ta được
\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{5x}{2y}+\frac{3x}{5y}+\frac{2x}{1y}=\frac{51}{10}\times\frac{x}{y}=\frac{153}{70}\) \(\Rightarrow\frac{x}{y}=\frac{153}{70}\div\frac{51}{10}=\frac{3}{7}\)
+)\(\frac{a}{b}=\frac{5}{2}\times\frac{3}{7}=\frac{15}{14}\) +)\(\frac{e}{f}=2\times\frac{3}{7}=\frac{6}{7}\)
+)\(\frac{c}{d}=\frac{3}{5}\times\frac{3}{7}=\frac{9}{35}\)
Vậy 3 phân số phải tìm lần lượt là \(\frac{15}{14};\frac{9}{35};\frac{6}{7}\)
- Giả sử a/b > c/d
Theo đề bài, ta có:
{a : c = 3 : 5
{b : d = 4 : 7
<=> Tỉ số của 2 phân số là: a/b : c/d = 3/4 : 5/7
<=> a/b . d/c = 3/4 . 7/5
<=> ad / bc = 21/20
<=> ad = 21/20 . bc = (21bc)/20
Ta lại có:
a/b - c/d = (ad - bc)/bd = 3/196
<=> [(21bc) / 20 - bc] / bd = 3/196
<=> [(21bc) / 20] / bd - bc / bd = 3/196
<=> (21bc) / 20 . 1 / bd - bc / bd = 3/196
<=> 21c / 20d - c / d = 3/196
<=> 21c / 20d - 20c / 20d = 3/196
<=> c / 20d = 3/196
=> c : 3 và 20d : 196 => c : 3 và d : 196/20 => c : 3 và d : 49/5
<=> c/d = 3 : 49/5 = 3 . 5 : 49 = 15/49
=> c = 15 ; d = 49
=> a : c = 3 : 5 => a : 15 = 3 : 5 => a = 9
và b : d = 4 : 7 => b : 49 = 4 : 7 => b = 28
=> a/b = 9/28 và c/d = 15/49
Thử lại, a/b - c/d = 9/28 - 15/49 = 3/196 (đúng theo yêu cầu đề bài)
- Do đó, 2 phân số cần tìm là 9/28 và 3/196
a) Ta có : 7x = 5z => x/5 = z/7 => x/15 = z/21 (1)
x/3 = y/2 => x/15 = y/10 (2)
Từ (1) và (2) suy ra \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau
Ta có : \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)=> \(\frac{4x}{60}=\frac{3y}{30}=\frac{2z}{42}=\frac{4x-3y-2z}{60-30-42}=\frac{-2}{-12}=\frac{1}{6}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{1}{6}\\\frac{y}{10}=\frac{1}{6}\\\frac{z}{21}=\frac{1}{6}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{6}.15=\frac{15}{6}\\y=\frac{1}{6}.10=\frac{5}{3}\\z=\frac{1}{6}.21=\frac{7}{2}\end{cases}}\)
Vậy ...