Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
Bài giải:
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
a, Gọi hai số tự nhiên cần tìm là x và y
Ta có: 42 = 1 x 42; 2 x 21; 3 x 14; 6 x 7
Các cặp số (x; y) cần tìm là:
x; y ϵ {(1;42); (2; 21); (3; 14); (6; 7)}
b, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
Theo đề bài, ta có điều kiện: a < b
=> a ϵ {1; 2; 3; 5}
=> b ϵ {6; 10; 15; 30}
Vậy các cặp số (a; b) cần tìm là:
(a; b) ϵ {(1; 30); (2; 15); (3; 10); (5; 6)}
a) Vì tích của 2 số tự nhiên là 42 mà
42=6x7
=42x1
= 21x2
= 14x3
Vậy các cặp số tự nhiên thỏa mã với đề bài là:
6 và 7;42 và 1; 21 và 2; 14 và 3
b) Vì a < b nhưng axb=30
Mà 30=3x10
= 6x5
= 30x1
= 15x2
Vậy a chỉ có thể bằng các số sau: 3;5;1;2
a) tích của 2 số là 42 suy ra mỗi số là Ư(42)
42=2x3x7
=1x42=2x21=3x14=6x7=42x1=21x2=14x3=7x6
=> các số đó là 1 và 42 ,2 và 21,3 và 14 , 6 và 7 , 42 và 1 , 21 và 2 , 14 và 3 , 7 và 6
b)axb=30=1x30=2x15=3x10=6x5
vì a<b => a =1 thì b = 30
a=2 thì b=15
a=3 thì b=10
a=5 thì b=6
a Tích của 2 stn có thể bằng : 1 x 42 , 2 . 21 , 3 . 14 , 6 . 7
b a x b = 30 và a < b => a và b có thẻ = 1 . 30 , 2 . 15 , 3 . 10 , 5 . 6
a) Vì tích của 2 số tự nhiên là 42 mà
42=6x7
=42x1
= 21x2
= 14x3
vậy các cặp số tự nhiên thỏa mã với đề bài là:
6 và 7;42 và 1; 21 và 2; 14 và 3
b) Vì a < b nhưng axb=30
mà 30=3x10
= 6x5
= 30x1
= 15x2
vậy a chỉ có thể bằng các số sau: 3;5;1;2
còn b chỉ có thể= 10;6;30;15
a )
4 và 5 ; 1 và 20 ; 2 và 10 ; .....
b )
4 và 12 ; 1 và 48 ; ......
nhiều mà