Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
Lời giải:
ĐK: $x\geq 0; x\neq 4; x\neq 9$
a)
\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$
Mà $\sqrt{x}-3\geq -3$ nên:
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$
$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.
a: \(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}+3}=-\dfrac{6}{\sqrt{x}+3}\)
b: P>=-1/2
=>P+1/2>=0
=>\(\dfrac{-6}{\sqrt{x}+3}+\dfrac{1}{2}>=0\)
=>\(\dfrac{-12+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}>=0\)
=>căn x-9>=0
=>x>=81
c: căn x+3>=3
=>6/căn x+3<=6/3=2
=>-6/căn x+3>=-2
Dấu = xảy ra khi x=0
\(a,A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\\ =2.2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\sqrt{3^2}-1}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\\ =-\dfrac{2\left(\sqrt{3}-1\right)}{2}+\left|\sqrt{3}+1\right|\\ =-\sqrt{3}+1+\sqrt{3}+1\\ =2\)
\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\left(dk:x\ge0,x\ne1\right)\\ =\left(1+\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\left(1-\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\\ =1-x\)
\(b,A=4\sqrt{B}\Leftrightarrow4\sqrt{1-x}=2\\ \Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\\ \Leftrightarrow\left|1-x\right|=\dfrac{1}{4}\)
\(\Leftrightarrow1-x=\dfrac{1}{4}\\ \Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)
Vậy \(x=\dfrac{3}{4}\) thì \(A=4\sqrt{B}\).
a) \(A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\)
\(A=2\cdot2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-4\sqrt{5}+\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}\)
\(A=4\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(A=-\left(\sqrt{3}-1\right)+\sqrt{3}+1\)
\(A=-\sqrt{3}+1+\sqrt{3}+1\)
\(A=2\)
\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
\(B=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)
\(B=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)
\(B=1^2-\left(\sqrt{x}\right)^2\)
\(B=1-x\)
b) Ta có: \(A=4\sqrt{B}\)
\(\Rightarrow2=4\sqrt{1-x}\)
\(\Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\)
\(\Leftrightarrow1-x=\dfrac{1}{4}\)
\(\Leftrightarrow x=1-\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)
a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
b) Để \(A< -\dfrac{1}{3}\) thì \(A+\dfrac{1}{3}< 0\)
\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{3}< 0\)
\(\Leftrightarrow\dfrac{-9+\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\sqrt{x}-6< 0\)
\(\Leftrightarrow x< 36\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 36\\x\ne9\end{matrix}\right.\)
\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ P=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ P=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{0+3}=-1\\ P_{min}=-1\Leftrightarrow x=0\)
a) \(P=\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}=\dfrac{4x}{\sqrt{x}-3}\)
\(\left(x\ge0;x\ne4;9\right)\)
b)\(P=-1\Leftrightarrow4x+\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
c) bpt đưa về dạng \(4mx>x+1\Leftrightarrow\left(4x-1\right)x>1\)
Nếu \(4m-1\le0\) thì tập nghiệm không thể chứa mọi giá trị \(x>9\); Nếu \(4m-1>0\) thì tập nghiệm bpt là \(x>\dfrac{1}{4m-1}\). Do đó bpt tm mọi \(x>9\Leftrightarrow9\ge\dfrac{1}{4m-1}\) và \(4m-1>0\). ta có \(m\ge\dfrac{5}{18}\)
a: \(A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}+3\sqrt{x}+9}{x-9}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{3x+9}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{3x+9}{x+4\sqrt{x}+3}\)
b: Để A<-1 thì A+1<0
\(\Leftrightarrow\dfrac{3x+9+x+4\sqrt{x}+3}{x+4\sqrt{x}+3}< 0\)
\(\Leftrightarrow\dfrac{4x+4\sqrt{x}+12}{x+4\sqrt{x}+3}< 0\)
hay \(x\in\varnothing\)