Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = -2 vào A ta được
\(A=\frac{\left|-2+1\right|+2.\left(-2\right)}{3.\left(-2\right)^2-2\left(-2\right)-1}=\frac{1-4}{12+4-1}=\frac{-3}{15}=-\frac{1}{5}\)
Thay x = 3/4 vào A ta được :
\(A=\frac{\left|\frac{3}{4}+1\right|+\frac{2.3}{4}}{3\left(\frac{3}{4}\right)^2-\frac{2.3}{4}-1}=\frac{\frac{7}{4}+\frac{6}{4}}{\frac{3.9}{16}-\frac{6}{4}-1}=\frac{\frac{13}{4}}{-\frac{13}{16}}=-\frac{16}{4}=-4\)
\(\frac{\left(2x^3+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\frac{2x\left(x^2+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\frac{2\left(x^2+1\right)\left(x-2\right)}{\left(x+2\right)\left(x+1\right)}\)
Thay x=\(\frac{1}{2}\)
\(=\frac{2\left(\frac{1}{2}^2+1\right)\left(\frac{1}{2}-2\right)}{\left(\frac{1}{2}+2\right)\left(\frac{1}{2}+1\right)}\)
\(=-1\)
a) A \(=\)\(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)\(=\)\(\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\)\(\frac{2\left(x-2\right)}{x+2}\)\(=\)\(\frac{2x-4}{x+2}\)
Tại x = \(\frac{1}{2}\)thì:
A = \(\frac{2.\frac{1}{2}-4}{\frac{1}{2}+2}\)\(=\)\(\frac{-3}{\frac{5}{2}}\)\(=\)\(\frac{-6}{5}\)
1)
ĐKXĐ: x\(\ne\)3
ta có :
\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)
để biểu thức A có giá trị = 1
thì :\(\frac{x-3}{2}\)=1
=>x-3 =2
=>x=5(thoả mãn điều kiện xác định)
vậy để biểu thức A có giá trị = 1 thì x=5
1)
\(A=\frac{x^2-6x+9}{2x-6}\)
A xác định
\(\Leftrightarrow2x-6\ne0\)
\(\Leftrightarrow2x\ne6\)
\(\Leftrightarrow x\ne3\)
Để A = 1
\(\Leftrightarrow x^2-6x+9=2x-6\)
\(\Leftrightarrow x^2-6x-2x=-6-9\)
\(\Leftrightarrow x^2-8x=-15\)
\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)
\(ĐKXĐ:x\ne1;x\ne\frac{-1}{3}\)
+) Nếu \(x\ge-1\Rightarrow\left|x+1\right|=x+1\)
\(\Rightarrow A=\frac{x+1+2x}{3x^2-2x-1}=\frac{3x+1}{\left(x-1\right)\left(3x+1\right)}=\frac{1}{x-1}\)
Với x = -2 thì \(A=\frac{-1}{3}\)
Với \(x=\frac{3}{4}\)thì \(A=-4\)
+) Nếu \(x< -1\Rightarrow\left|x+1\right|=-x-1\)
\(\Rightarrow A=\frac{-x-1+2x}{3x^2-2x-1}=\frac{x-1}{\left(x-1\right)\left(3x+1\right)}=\frac{1}{3x+1}\)
Với x = -2 thì \(A=\frac{-1}{5}\)
Với \(x=\frac{3}{4}\)thì \(A=\frac{4}{13}\)