Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\frac{2n+3}{n}=\frac{2n}{n}+\frac{3}{n}\)\(=2+\frac{3}{n}\)
A là phân số \(\Leftrightarrow\frac{3}{n}\)không chia hết cho n
\(\Leftrightarrow\)3 không chia hết cho n
\(\Leftrightarrow\)n \(\notin\)Ư(3)
\(\Leftrightarrow\)n \(\notin\) {1;-1;3;-3}
Vậy A có giá trị phân số <=> n \(\notin\){1;-1;3;-3}
b, Theo câu a ta có:
\(A=2+\frac{3}{n}\)
A là số nguyên <=> \(2+\frac{3}{n}\) là số nguyên
<=> \(\frac{3}{n}\) là số nguyên
<=> \(3⋮n\)
<=> n \(\in\) Ư(3)
<=> n \(\in\) {1;-1;3;-3}
Vậy A là số nguyên <=> n \(\in\) {1;-1;3;-3}
b, A = 2n+3/n
=>1/2.A = 2n+3/2n = 2n/2n + 3/2n = 1 + 3/2n
=> 2n E Ư(3)
Mà 2n chẵn , 3 chỉ có ước lẻ
=> Ko có giá trị n nào phù hợp để A là số nguyên
a, Từ phần b =>
n thuộc Z để A là p/s
a ) Để \(A=\frac{2n+3}{n}\) là phân số \(\Leftrightarrow n\ne0\)
b ) \(\frac{2n+3}{n}=\frac{2n}{n}+\frac{3}{n}=2+\frac{3}{n}\)
Để \(2+\frac{3}{n}\) là số nguyên \(\Leftrightarrow\frac{3}{n}\) là số nguyên
\(\Rightarrow n\inƯ\left(3\right)=\){ - 3; - 1; 1; 3 }
Vậy n = { - 3; - 1 ; 1 ; 3 }
Để A là phân số thì \(n\ne0\)
ta có:\(A=\frac{2n+3}{n}=\frac{2n}{n}+\frac{3}{n}=2+\frac{3}{n}\)
\(\Rightarrow\)Để Alà số nguyên thì \(n\inƯ\left(3\right)\)
\(Ư\left(3\right)=\hept{ }1;-1;3;-3\)
\(\Rightarrow n\in\left\{1;-1;3;-3\right\}\)thì Alà số nguyên
Cho A=2n+3/n, với n thuộc Z
Với giá trị nào của n thì A là phân số
Tìm giá trị của n để A là số nguyên
Giải câu b trước nha.
b) Ta có: A = 2n+2/2n = 2n/2n + 2/2n = 1 + 1/n
Có 1 là số nguyên => Để A là số nguyên thì 1/n là số nguyên
=> n = {-1;1}
Vậy n=1 hoặc n=-1 thì A là số nguyên.
a) Để A là phân số thì n khác 1 và -1 ( theo câu b )
a, A là phân số chỉ khi \(2n-4\ne0\Rightarrow n\ne2\)
b, A \(\in Z\)\(\Leftrightarrow2n+2⋮2n-4\Leftrightarrow2n-4=6\Rightarrow6⋮2n-4\)
Vì \(2n-4\)là số chẵn nên :
\(2n-4=-6\Rightarrow2n=-2\Rightarrow n=-1\text{và }A=0\)
\(2n-4=-2\Rightarrow2n=2\Rightarrow n=1\text{và }A=-2\)
\(2n-4=2\Rightarrow2n=6\Rightarrow n=3\text{và }A=4\)
\(2n-4=6\Rightarrow2n=10\Rightarrow n=5\text{và }A=2\)
Vậy ....
a) Để A là phân số thì : 2n - 4 ≠ 0=>n ≠ 2
Vậy với n ≠ 2 thì A là phân số
b) Ta có A = 2 n + 2 2 n − 4 = 1 + 6 2 n − 2 = 1 + 3 n − 2
Để A là số nguyên thì 3 ⋮ n - 2 hay (n - 2) ∈ U(3)
n − 2 = 1 ⇒ n = 3 n − 2 = − 1 ⇒ n = 1 n − 2 = 3 ⇒ n = 5 n − 2 = − 3 ⇒ n = − 1
Vậy n ∈ − 1 ; 1 ; 3 ; 5 thì A là số nguyên.
ta có
\(A=\frac{2n+3}{n}=2.\frac{n+3}{n}=2.\frac{n}{n}+\frac{3}{n}=2.\frac{3}{n}\)
=>để A là phân số thì n \(\notinƯ_3=\left[1;-1;3;-3\right]\)=>n là tất cả các số khác 1;-1;2;-2
để A là là số nguyên thì n thuộc {1;-1;2;-2}
\(A=\frac{2n+3}{n}=2+\frac{3}{n}\)
a) Để A là phân số thì \(\frac{3}{n}\)cũng là phân số, nghĩa là n khác không và n không là ước của 3.
Vậy n là số nguyên khác \(0;1;-1;3;-3\)thì A là phân số.
b) Để A là số nguyên thì \(\frac{3}{n}\)cũng là số nguyên, nghĩa là n khác không và n là ước của 3.
Vậy n = \(1;-1;3;-3\)thì A là số nguyên.
A = \(\frac{2n+2}{2n}=\frac{2n}{2n}+\frac{2}{2n}=1+\frac{1}{n}\)
a, Để A là phân số thì n\(\ne\)0 ( Lưu ý một số cũng là một phân số)
b, Để A là số nguyên thì n là ước của 1=> n = 1 hoặc n = -1
a) \(A=\frac{2n+2}{2n}=\frac{2n}{2n}+\frac{2}{2n}=1+\frac{1}{n}\)\(\left(n\in Z;n\ne0\right)\)
Để A là phân số thì \(\frac{1}{n}\) là một phân số hay n không phải là ước của 1
Vậy n thuộc bất kì số nguyên nào với \(n\ne1;-1;0\) thì A là phân số
b) Để A là số nguyên thì \(\frac{1}{n}\) là một số nguyên hay n là ước của 1
Vậy \(n=1;-1\) thì A là số nguyên
a)Với mọi giá trị của \(n\in Z\) khác 0 thì A là phân số
b)\(A=2+\frac{3}{n}\)
Để A là số nguyên thì 3 chia hết cho n. Hay n thuộc Ư(3)
Tự giải............
a) Có 2n : n
Vậy 3 : n
Vậy n phải khác 3
b)Có 2n : n
=> 3 : n thuộc { 3, -3 }
Vậy n thuộc { 3,-3 }
MK ko biết kí hiệu thông cảm nha :)))
# USAS - 12 #