Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+...+\dfrac{11}{5^{12}}\)
\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+...+\dfrac{11}{5^{11}}\)
\(\Rightarrow5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow20A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)
\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)
\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)
\(\Rightarrow A< \dfrac{1}{16}\)
⇒5A=15+252+...+11511⇒5A=15+252+...+11511
⇒5A−A=15+152+...+1511−11512⇒5A−A=15+152+...+1511−11512
⇒4A=15+152+...+1511−11512⇒4A=15+152+...+1511−11512
⇒20A=1+15+...+1510−11511⇒20A=1+15+...+1510−11511
⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)
⇒16A=1−12511+11512<1⇒16A=1−12511+11512<1
⇒A<116⇒A<116
cau 1
de a dat gia tri lon nhat suy ra5a-17/4a-23 lon nhat
suy ra 4a-23 phai nho nhat khac 0 va la so nguyen duong
suy ra 4a-23=1
suy ra 4a=1+23=24
suy ra a=24 chia 4=6
vay de a nho nhat thi a=6
Bài 1:
a: \(A=\dfrac{\left(85+\dfrac{7}{30}-83-\dfrac{5}{18}\right):\dfrac{8}{3}}{\dfrac{1}{25}}\)
\(=\left(2+\dfrac{7}{30}-\dfrac{5}{18}\right)\cdot\dfrac{3}{8}\cdot25\)
\(=\dfrac{180+21-25}{90}\cdot\dfrac{75}{8}\)
\(=\dfrac{176}{90}\cdot\dfrac{75}{8}=\dfrac{55}{3}\)
=>12,5% của A là 55/8x1/8=55/64
b: \(B=\dfrac{\left(6+\dfrac{3}{5}-3-\dfrac{3}{14}\right)\cdot\dfrac{36}{5}}{19.75:2.5}\)
\(=\dfrac{\left(3+\dfrac{27}{70}\right)\cdot\dfrac{36}{5}}{\dfrac{79}{10}}\)
\(=\dfrac{\dfrac{210+27}{70}\cdot\dfrac{36}{5}}{\dfrac{79}{10}}\)
\(=\dfrac{4266}{175}\cdot\dfrac{10}{79}=\dfrac{108}{35}\)
=>5% là 108/35x1/20=27/175
a) (1/7.x-2/7).(-1/5.x-2/5)=0
=> 1/7.x-2/7=0hoặc-1/5.x-2/5=0
*1/7.x-2/7=0
1/7.x=0+2/7
1/7.x=2/7
x=2/7:1/7
x=2
b)1/6.x+1/10.x-4/5.x+1=0
(1/6+1/10-4/5).x+1=0
(1/6+1/10-4/5).x=0-1
(1/6+1/10-4/5).x=-1
(-8/15).x=-1
x=-1:(-8/15) =15/8
a)\(\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right)\cdot\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}\cdot\dfrac{-5}{6}+\left(\dfrac{-1}{4}\right)=\dfrac{5}{12}+\dfrac{1}{2}=\dfrac{11}{12}\)
b)\(17\dfrac{11}{9}-\left(6\dfrac{3}{13}+7\dfrac{11}{19}\right)+\left(10\dfrac{3}{13}-5\dfrac{1}{4}\right)=\dfrac{164}{9}-\left(\dfrac{81}{13}+\dfrac{144}{19}\right)+\left(\dfrac{133}{13}-\dfrac{21}{4}\right)=\dfrac{164}{9}-\dfrac{3411}{247}+\dfrac{259}{52}=\dfrac{6425}{684}\)
c)\(\left(\dfrac{-3}{2}\right)^2-\left[-2\dfrac{1}{3}-\left(\dfrac{3}{4}+\dfrac{1}{3}\right):2\dfrac{3}{5}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left[\dfrac{-7}{3}-\dfrac{13}{12}\cdot\dfrac{5}{13}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left(\dfrac{-11}{4}\right)\cdot\left(\dfrac{-3}{4}\right)=\dfrac{3}{16}\)
d)\(\dfrac{21}{33}:\dfrac{11}{5}-\dfrac{13}{33}:\dfrac{11}{5}+\dfrac{25}{33}:\dfrac{11}{5}+\dfrac{6}{11}=\dfrac{5}{11}\cdot\left(\dfrac{21}{33}-\dfrac{13}{33}+\dfrac{25}{33}\right)+\dfrac{6}{11}=\dfrac{5}{11}\cdot1+\dfrac{6}{11}=1\)
\(a)\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}:\left(\dfrac{-6}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\dfrac{-1}{4}\)
\(=\dfrac{7}{6}+\dfrac{-1}{4}\)
\(=\dfrac{11}{12}\)
e, D = 512+1 /513+ 1 < 1 => 512+1/ 513+1 < 512+1+4/ 513+1+4
= 512+5/ 513+5 = 5. (511+1) / 5. (512+1) = 511+1 / 512+1= E
Vậy D < E
a: \(=\dfrac{5\cdot\left(8-6\right)}{10}=\dfrac{5\cdot2}{10}=1\)
b: \(\dfrac{\left(-4\right)^2}{5}=\dfrac{16}{5}\)
\(B=\dfrac{3}{7}-\dfrac{1}{5}-\dfrac{3}{7}=-\dfrac{1}{5}\)
c: \(C=\left(6-2.8\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)
\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}\)
\(=5\cdot2-\dfrac{32}{5}=10-\dfrac{32}{5}=\dfrac{18}{5}\)
d: \(D=\left(\dfrac{-5}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)
\(=\dfrac{27}{24}\cdot\dfrac{-8}{17}=\dfrac{-9}{8}\cdot\dfrac{8}{17}=\dfrac{-9}{17}\)
Ta có :
\(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+.............+\dfrac{n}{5^{n+1}}+.....+\dfrac{11}{5^{12}}\)
\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{3^3}+........+\dfrac{n}{5^n}+..........+\dfrac{11}{5^{11}}\)
\(\Rightarrow5A-A=\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+.....+\dfrac{n}{5^n}+....+\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5^2}+\dfrac{2}{5^3}+.....+\dfrac{n}{5^{n+1}}+........+\dfrac{11}{5^{12}}\right)\)\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow20A=1+\dfrac{1}{5}+.........+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)
\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+.......+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)
\(\Rightarrow A< \dfrac{1}{16}\rightarrowđpcm\)