Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(x^2+2\sqrt{3}x-6=0\)
\(\Leftrightarrow\) \(x^2+2\sqrt{3}x+3-9=0\)
\(\Leftrightarrow\) \(\left(x+\sqrt{3}\right)^2-9=0\)
\(\Leftrightarrow\) \(\left(x+\sqrt{3}-3\right).\left(x+\sqrt{3}+3\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{array}{} x+\sqrt{3}-3=0 \\ x+\sqrt{3}+3=0 \end{array} \right.\)\(\Leftrightarrow\) \(\left[\begin{array}{} x= 3-\sqrt{3} \\ x= -3-\sqrt{3} \end{array} \right.\)
Vậy phương trình có tập nghiệm là S={\(3-\sqrt{3};-3-\sqrt{3}\)}
Cái này mình biết chút... nhưng mà giải trên đây không tiện lắm bạn có chới zalo ko gửi ad qua cho mình để kp rồi mình gửi lời giải qua luôn...
\(\left(x+y\right)^2-2xy=x^2+y^2=4^2-2.1=14\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=14^2-2=196-2=194\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=4\left(14-1\right)=52\)
\(\left(x^4+y^4\right)\left(x+y\right)=194.4=776\Leftrightarrow x^5+y^5+x^4y+y^4x=\left(x^5+y^5\right)+xy\left(x^3+y^3\right)=\left(x^5+y^5\right)+1.52=\left(x^5+y^5\right)+52=776\Rightarrow x^5+y^5=724\)
\(\left\{{}\begin{matrix}x+y=4\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=16\\4xy=4\end{matrix}\right.\Rightarrow x^2+2xy-4xy+y^2=\left(x-y\right)^2=12mà:x>y\Leftrightarrow x-y>0\Rightarrow x-y=\sqrt{12}=2\sqrt{3};x+y=2.2\Rightarrow\left\{{}\begin{matrix}x=\sqrt{3}+2\\y=2-\sqrt{3}\end{matrix}\right.\)
\(x^2-y^2=\left(x-y\right)\left(x+y\right)=4.2\sqrt{3}=8\sqrt{3}\)
\(\left(x^2+y^2\right)\left(x^2-y^2\right)=8\sqrt{3}.14=112\sqrt{3}\Rightarrow x^4-y^4=112\sqrt{3}\)
\(\left(x^3-y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right);x^6-y^6=\left(x^3+y^3\right)\left(x^3-y^3\right)tựlm\)
\(x^3+3y^2-6y+3+8=0\Leftrightarrow3\left(y-1\right)^2=-x^3-8\)
\(3\left(y-1\right)^2\ge0\Rightarrow-x^3-8\ge0\Rightarrow x\le-2\) (1)
Từ pt sau ta có:
\(\left(x^2-3\right).y^2-2y+x^2-3=0\)
\(\Delta'=1-\left(x^2-3\right)^2\ge0\Leftrightarrow-1\le x^2-3\le1\)
\(\Rightarrow2\le x^2\le4\Rightarrow\left|x\right|\le2\Rightarrow x\ge-2\) (2)
Từ (1) và (2) \(\Rightarrow x=-2\Rightarrow y=1\) \(\Rightarrow A=-7\)
b)Đặt $S=x+y,P=xy$ thì được:
\(\left\{ \begin{align} & S+P=2+3\sqrt{2} \\ & {{S}^{2}}-2P=6 \\ \end{align} \right.\Rightarrow {{S}^{2}}+2S+1=11+6\sqrt{2}={{\left( 3+\sqrt{2} \right)}^{2}}\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} S = 2 + \sqrt 2 \\ P = 2\sqrt 2 \end{array} \right. \Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2;\sqrt 2 } \right),\left( {\sqrt 2 ;2} \right)} \right\}\\ \left\{ \begin{array}{l} S = - 4 - \sqrt 2 \\ P = 6 + 4\sqrt 2 \end{array} \right.\left( {VN} \right) \end{array} \)
\( c)\left\{ \begin{array}{l} 2{x^2} + xy + 3{y^2} - 2y - 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2\left( {2{x^2} + xy + 3{y^2} - 2y - 4} \right) - \left( {3{x^2} + 5{y^2} + 4x - 12} \right) = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 2xy + {y^2} - 4x - 4y + 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {\left( {x + y - 2} \right)^2} = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + y - 2 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right. \)
bấm máy tính
Thế thì nói chuyện làm gì