K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a:

=x(x2-y2-10x+25)

=x((x2-10x+25)-y2)

=x((x-5)2-y2)

=x(x-5-y)(x-5+y)

b

=>8x(x-5)-3(x-5)=0

=>(x-5)(8x-3)=0

x-5=0=>x=5 hoặc 8x-3=0=>x=3/8

 

 

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

20 tháng 10 2015

1/ phân tích thành nhân tử ;

= C2-( a +b )2=( c-a -b ) . ( c+a +b )

 

3 tháng 9 2018

\(x^3-5x^2+8x-4\)

\(=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\)

19 tháng 10 2021

1) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right).\left(x^2+5x+3x+15\right)+15\)

\(=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)

Ta đặt: \(x^2+8x+7=n\)

\(=n.\left(n+8\right)+15\)

\(=n^2+8n+15\)

\(=n^2+3n+5n+15\)

\(=\left(n^2+3n\right)+\left(5n+15\right)\)

\(=n.\left(n+3\right)+5.\left(n+3\right)\)

\(=\left(n+3\right).\left(n+5\right)\)

\(=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)

\(=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)

\(=\left(x^2+8x+10\right).[x.\left(x+2\right)+6.\left(x+2\right)]\)

\(=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)

19 tháng 10 2021

2) \(x^2-2xy+3x-3y-10+y^2\)

\(=\left(x-y\right)^2+3.\left(x-y\right)-10\)

Ta đặt: \(x-y=n\)

\(=n^2+3n-10\)

\(=n^2-2n+5n-10\)

\(=\left(n^2-2n\right)+\left(5n-10\right)\)

\(=n.\left(n-2\right)+5.\left(n-2\right)\)

\(=\left(n-2\right).\left(n+5\right)\)

\(=\left(x-y-2\right).\left(x-y+5\right)\)

11 tháng 6 2015

a, \(3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)

b. \(8x^2-2x+12x-3=2x\left(4x-1\right)+3\left(4x-1\right)=\left(4x-1\right)\left(2x+3\right)\)

c. đề kiểu gì vậy? -2x-x để thành -3x à? xem lại đi nha

d. \(\left(x^2+10x+25\right)-\left(y^2+6y+9\right)=\left(x+5\right)^2-\left(y+3\right)^2=\left(x+5-y-3\right)\left(x+5+y+3\right)=\left(x-y+2\right)\left(x+y+8\right)\)

e. \(=x^4+2x^2y^2+y^4-x^2y^2=\left(x^2+y^2\right)^2-x^2y^2=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)

nhớ  L I K E

10 tháng 8 2016
  • x2.(x3-x2+x-1)
  • x.( x3-3x2-1)+3
  • x.(x2-xy-y2)

    Tìm x:

      x3-16x = 0

     => x.(x2-16) = 0

     => x = 0 hay x2-16 = 0

     => x = 0 hay x2 = 0+16

     => x = 0 hay x2 = 16

     => x = 0 hay x   = 4 hay x = -4

     

12 tháng 8 2016

a) Đăt \(x^2+x=t\) khi đó bt trở thành:

 \(t^2-2t-15=t^2+3t-5t-15=t\left(t+3\right)-5\left(t+3\right)\\ =\left(t+3\right)\left(1-5\right)=\left(x^2+x+3\right)\left(x^2+x-5\right)\)

 

 

12 tháng 8 2016

lm 2 câu kia đi

4 tháng 9 2017

a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24 
= (x+2)(x+5)(x+3)(x+4)-24 
= (x^2+7x+10)(x^2+7x+12)-24 
Đặt x^2+7x+11 = a thay vào A ta được : 
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2) 
Thế a vào (2) ta được : 
A=(x^2+7x+11-5)(x^2+7x+11+5) 
= (x^2+7x+6)(x^2+7x+16) 

b)  = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

   d)  2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)

Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1  nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)

Vậy 2x4 - 3x3 - 7x2 + 6x + 8  = (x-2)(x+1)(2x2-x-4)

4 tháng 9 2017

  a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

 \(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)

 \(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)

 \(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)

 \(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)

 \(=\left(x^2+x-1\right)^2-1=24\)

 \(=\left(x^2+x-1\right)^2=25\)

   xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé