K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

a) \(x^2+4y^2+4xy-16\)

\(=\left(x^2+4xy+4y^2\right)-16\)

\(=\left[x^2+2.x.2y+\left(2y\right)^2\right]-4^2\)

\(=\left(x+2y\right)^2-4^2\)

\(=\left(x+2y-4\right)\left(x+2y+4\right)\)

b) Đặt \(A=\left(2x+y\right)\left(y-2x\right)+4x^2\)

\(A=y^2-4x^2+4x^2\)

\(A=y^2\)

Thay y = 10 vào biểu thức A ta được :

\(A=y^2=10^2=100\)

Vậy giá trị của biểu thức A là 100

12 tháng 12 2017

Câu 1: (2x+y)(y-2x)+4x2=y2-4x2+4x2=y2

Với y=10 giá trị biểu thức trên là 102=100

Câu 2: 

a. xy-11x=x.(y-11)

b. x2+4y2+4xy-16=(x2+4xy+4y2)-16

=(x+2y)2-16=(x+2y+4)(x+2y-4)

12 tháng 12 2017

I don know

23 tháng 10 2016

a) \(\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)

\(=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left(x-y-2\right)\left(x+y\right)\)

23 tháng 10 2016

b) xy+y2 = y ( x + y )

c) \(=\left(x^2+4xy+4y^2\right)-25\)

\(=\left(x+2y\right)^2-5^2\)

\(=\left(x+2y+5\right)\left(x+2y-5\right)\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

23 tháng 12 2018

1/ 

a) \(x^2+4y^2+4xy-16\)

\(=x^2+2.2xy+\left(2y\right)^2-4^2\)

\(=\left(x+2y\right)^2-4^2\)

\(=\left(x+2y-4\right)\left(x+2y+4\right)\)

23 tháng 12 2018

b) ta có:

\(\left(2x+y\right)\left(y-2x\right)+4x^2\)

\(=-\left(2x-y\right)\left(2x+y\right)+4x^2\)

\(=\left(2x\right)^2-\left[\left(2x\right)^2-y^2\right]\)

\(=\left(2x\right)^2-\left(2x\right)^2+y^2\)

\(=y^2\)

Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x

nên tại y = 10

giá trị của biểu thức trên bằng y2 = 102 = 100

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

28 tháng 9 2016

1:

a) \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)

b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)

2

\(-2x^2-4x+6=0\)

\(\Leftrightarrow-2\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow x^2-x+3x-3=0\)

\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)

28 tháng 9 2016

1,

a) x( x2 + 2x +1) = x(x+1)2

b)25 - (x-2y)= (5-x+2y)(5+x-2y)

2,

(x-1)(x+3)=0

<=>x=1 hoặc x=-3