K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

A = n^2 ( n+ 3 ) - ( n+ 3 )

     = ( n^2 - 1 )(n+ 3 )

      = ( n+ 1 )(n- 1 )(n + 3)

Vì n lẻ => n = 2k+ 1 thay vào ta có :

   A = ( 2k + 1 + 1 )(2k+1 - 1 )(2k + 1 + 3) = (2k+2).2k (2k+4) = 2(k+1).2k . 2(k+2) = 8k(k+1)(k+2)

Luôn luôn chia hết cho 8  mới mọi n lẻ 

=> A chia hết cho 8 

14 tháng 12 2016

a chia hết cho 8

23 tháng 10 2019

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.

14 tháng 8 2016

A = n3 + 3n2 - n - 3

A = n2.(n + 3) - (n + 3)

A = (n + 3).(n2 - 1)

A = (n + 3).(n - 1).(n + 1)

Vì n lẻ nên n + 3 chẵn; n - 1 chẵn; n + 1 chẵn

=> A = (n + 3).(n - 1).(n + 1) là tích 3 số chẵn, chia hết cho 2 (đpcm)

5 tháng 11 2018

\(A=n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n lẻ nên n có dạng: \(n=2k+1\left(\forall k\in N\right)\)

\(\Rightarrow A=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right).2k.\left(2k+2\right)\)

\(=2\left(k+2\right).2k.2\left(k+1\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Mà 8k(k+1)(k+2)\(⋮8\forall k\)

Nên \(A⋮8\)

26 tháng 9 2017

a) \(n^2+4n+3\)

Vì n là số lẻ nên n : 2 dư 1

Gọi n = 2k + 1

Thay n = 2k + 1 vào \(n^2+4n+3\)

Có : \(n^2+4n+3\) \(=n^2+3n+n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)= ( n + 3 ) ( n + 1 ) (1)

Thay n = 2k + 1 vào (1)

=> (1) = \(\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)=4\left(k+2\right)\left(k+1\right)\)

Xét: k + 2; k + 1 là hai số tự nhiên liên tiếp

=> \(\left(k+2\right)\left(k+1\right)\) \(⋮2\)

=> \(4\left(k+2\right)\left(k+1\right)⋮8\)

=> đpcm

26 tháng 9 2017

a) Ta có:

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n+3\right)\)

Mà n là số nguyên lẻ nên chia cho 2 dư 1 = 2k + 1 \(\left(k\in Z\right)\)

Do đó \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

\(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

Vậy \(n^3+4n+3=\left(n+1\right)\left(n+3\right)=4\left(k+1\right)\left(k+2\right)\) chia hết cho 4; chi hết cho 2.

=> \(n^3+4n+3⋮4.2=8\)

Vậy ...

                                                      Bài giải    :

8.1 x+y=xy

⇒x-xy+y=0

⇒x(1-y)+(y-1)+1=0

⇒(x-1)(1-y)+1=0

⇒(x-1)(y-1)-1=0

⇒(x-1)(y-1)=1

⇒x-1, y-1 là ước của 1

⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1

⇒(x;y)=(2;2),(0;0)

 8.3. 5xy-2y²-2x²+2=0

⇔(x-2y)(y-2x)+2=0

⇔(x-2y)(2x-y)=2

⇒x-2y và 2x-y là ước của 2

Hình như tui nhầm bài thì phải???

16 tháng 12 2019

\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n là số tự nhiên lẻ \(\Rightarrow n=2k+1\left(k\inℕ\right)\)

\(\Rightarrow n^4-1=\left(2k+1-1\right)\left(2k+1+1\right)\left(n^2+1\right)\)

                    \(=2k.\left(2k+2\right)\left(n^2+1\right)=4k\left(k+1\right)\left(n^2+1\right)\)

Vì \(k\)và \(k+1\)là 2 số tự nhiên liên tiếp \(\Rightarrow k\left(k+1\right)⋮2\)

\(\Rightarrow4k\left(k+1\right)⋮8\)\(\Rightarrow n^4-1⋮8\)