K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

2x=3y=4z <=> x/3=y/4=z/2

Theo tính chất DTSBN ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{36}{9}=4\)

x/3=4 => x=4.3=12

y/4=4 => y=4.4=16

z/2=4 => z=2.4=8

Vậy x=12 ; y=16 và z=8

14 tháng 1 2018

2x=3y=4z <=> x/3=y/4=z/2

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{72}{9}=8\)

Bài này t nhớ nãy t làm rồi , rán quay lại tham khảo

20 tháng 2 2018

2x=3y=4z \(\Leftrightarrow\) x/3=y/4=z/2

\(\text{Theo tính chất dãy tỉ số bằng nhau ta có :}\)

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{\text{ x + y + z}}{3+4+2}=\frac{72}{9}=8\text{ }\)

7 tháng 1 2018

\(2x=3y=4z\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)

\(\frac{x}{3}=2\Rightarrow x=2.3=6\)

\(\frac{y}{4}=2\Rightarrow y=2.4=8\)

\(\frac{z}{2}=2\Rightarrow z=2.2=4\)

Vậy x=6 ; y=8 và z=4

7 tháng 1 2018

Bài này cũng tạm được :

theo đề bài ta có :

\(2x=3y=4z\)

\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)và \(x+y+z=18\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)

\(\Rightarrow\)\(x=2.3=6\)

\(\Rightarrow\)\(y=2.4=8\)

\(\Rightarrow\)\(z=2.2=4\)

Vậy bạn tự kết luận

12 tháng 1 2018

2x = 3y = 5z ; x+y+z = 20

=> x+y+z/2+3+5 

= 20/10

= 2

=> x = 2.2 = 4

y = 2.3 = 6

z = 2.5 = 10

đúng ko nhỉ ?

12 tháng 1 2018

Tưởng CTV bên olm thế nào,đel bằng 1 nửa bên h :)

\(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Tự làm được chứ?

8 tháng 1 2018

2x=3y=5z <=> x/3=y/5=z/2

Theo tính chất DTSBN ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{40}{10}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\)

\(\frac{y}{5}=4\Rightarrow y=4.5=20\)

\(\frac{z}{2}=4\Rightarrow z=4.2=8\)

Vậy x=12 ; y=20 và z=8

14 tháng 1 2018

Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left(y+3\right)^2\ge0\\\left|z+6\right|\ge0\end{cases}\forall x,y,z\Rightarrow\left|x-2\right|+\left(y+3\right)^2+\left|z+6\right|\ge0}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left(y+3\right)^2=0\\\left|z+6\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-3\\z=-6\end{cases}}}\)

14 tháng 1 2018

Ta co : |x-2| ; (y+3)^2 ; |z+6| đều >= 0 

=> |x-2|+(y+3)^2+|z+6| >= 0

Dấu "=" xảy ra <=> x-2=0 ; y+3=0 ; z+6=0  <=> x=2 ; y=-3 ; z=-6

Vậy x=2 ; y=-3 ; z=-6

Tk mk nha

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

a)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)\(x-y+z=36\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)

\(\Rightarrow\)\(x=5.6=30\)
         \(y=6.6=36\)

         \(z=7.6=30\)

b)\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\)\(x+y-z=32\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{x+y-z}{5+\left(-6\right)-7}=\frac{32}{-8}=-4\)

\(\Rightarrow\)\(x=-4.5=-20\)

         \(y=-4.-6=24\)

         \(z=-4.7=-28\)

c)\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)và \(2x+3y+4z\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2.5+3.3+4.2}\)\(=\frac{54}{27}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.3=6\)
         \(z=2.2=4\)

d)\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\)và \(2x-3y+5z=38\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.2=4\)

          \(z=3.2=6\)

Hok tốt!

@Kaito Kid

15 tháng 10 2021

Tính chất của dãy tỉ số bằng nhau

15 tháng 10 2021

thôi sai rồi

người ta cho có x với z mà