K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMFB và ΔMDC có

MF=MD

\(\widehat{FMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMFB=ΔMDC

=>FB=DC

Ta có: ΔMFB=ΔMDC

=>\(\widehat{MFB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên FB//DC

b: Sửa đề: Lấy P bất kì  nằm giữa B và F

Xét ΔMPF và ΔMQD có

MP=MQ

\(\widehat{PMF}=\widehat{QMD}\)

MF=MD

Do đó: ΔMPF=ΔMQD

=>\(\widehat{MPF}=\widehat{MQD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên FP//QD

=>QD//FB

ta có: QD//FB

CD//FB

mà QD,CD có điểm chung là D

nên Q,C,D thẳng hàng

c: Kẻ MH\(\perp\)FE

Ta có: ΔFBC vuông tại F

mà FM là đường trung tuyến

nên MF=BC/2(1)

Ta có: ΔBEC vuông tại E

mà EM là đường trung tuyến

nên \(ME=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MF=ME

=>ΔMFE cân tại M

Ta có: ΔMFE cân tại M

mà MH là đường cao

nên H là trung điểm của FE

Ta có: HF+FI=HI

HE+EK=HK

mà HF=HE và FI=EK

nên HI=HK

=>H là trung điểm của IK

Xét ΔMIK có

MH là đường cao

MH là đường trung tuyến

Do đó: ΔMIK cân tại M

a: Xét tứ giác ABDE có

M là trung điểm của AD

M là trung điểm của BE

DO đó: ABDE là hình bình hành

Suy ra: AE//BD

hay AE//BC(1)

Xét tứ giác AFDC có

M là trung điểm của AD

M là trung điểm của CF

Do đó: AFDC là hình bình hành

SUy ra: AF//DC
hay AF//BC(2)

Từ (1) và (2) suy ra E,A,F thẳng hàng

b: Xét tứ giác BFEC có

M là trung điểm của BE

M là trung điểm của CF

Do đó: BFEC là hình bình hành

Suy ra: BF//EC

18 tháng 12 2016

A B C F E M D

a)Xét ΔAME và ΔDMB có:

AM=DM(gt)

\(\widehat{AME}=\widehat{DMB}\left(đđ\right)\)

ME=MB(gt)

=> ΔAME=ΔDMB(c.g.c)

=> \(\widehat{AEM}=\widehat{DBM}\). Mà hai góc này ở vị trí sole trong

=> AE//BC

b)Xét ΔAMF và ΔDMC có:

AM=DM(gt)

\(\widehat{AMF}=\widehat{DMC}\left(đđ\right)\)

MF=MC(gt)

=> ΔAMF=ΔDMC(c.g.c)

=> \(\widehat{AFM}=\widehat{DCM}\). Mà hai góc này ở vị trí sole trong

=> AF//DC

Vì: AE//BC(cmt) ; AF//BC(cmt)

=> Ba điểm E,A ,F thẳng hàng

c) Xét ΔMBF và ΔMEC có:

MB=ME(gt)

\(\widehat{BMF}=\widehat{EMC}\left(đđ\right)\)

MF=MC(gt)

=>ΔMBF=ΔMEC(c.g.c)

=>\(\widehat{MFB}=\widehat{MCE}\). Mà hai góc này ở vị trí sole trong

=>BF//CE

22 tháng 12 2019

jgkhh/o

18 tháng 12 2016

a)Xét ΔAMD và ΔCMB có :

góc AMB = góc CMD ( đối đỉnh)

AM = NC ( GT)

BM = MD ( GT)

--->ΔAMD = ΔCMB(c.g.c)

b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)

tạo ra hai góc so le trong bằng nhau

--->AD//BC

c)Xét ΔABC và ΔCDA có :

AC : cạnh chung

AD = BC (ΔAMD = ΔCMB)

góc CAD = góc ACB(ΔAMD = ΔCMB)

--->ΔABC = ΔCDA(c.g.c)

d)ta có AE + ED = AD

AF+ FC = BC

mà EF= BF; AD = BC

--->AE = FC

xét ΔAFC và ΔACE có :

AE = FC (CMT)

AC : cạnh chung

góc CAE = góc ACF (ΔAMD = ΔCMB)

--->ΔAFC = ΔCEA ( c.g.c)

--->góc AEC = góc AFC ( hai góc tương ứng)

--->góc AEC = góc AFC=90'

--->AF vuông góc với BC

Hỏi đáp Toán

18 tháng 12 2016

a) Xét t/g AMD và t/g CMB có:

AM = CM (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)

b) t/g AMD = t/g CMB (câu a)

=> ADM = CBM (2 góc tương ứng)

Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)

c) t/g AMD = t/g CMB (câu a)

=> AD = BC (2 cạnh tương ứng)

Xét t/g ABC và t/g CDA có:

BC = AD (gt)

ACB = CAD (so le trong)

AC là cạnh chung

Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)

d) Có: AD = BC (câu c)

DE = BF (gt)

Suy ra AD - DE = BC - BF

=> AE = CF

Mà AE // CF do AD // BC (câu b)

Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)

Lại có: CE _|_ AD (gt) => AF _|_ AD

Mà BC // AD (câu b) => AF _|_ BC (đpcm)

 

31 tháng 1 2020

Tham khảo: Câu hỏi của VỘI VÀNG QUÁ - Toán lớp 7 | Học trực tuyến

link:https://h.vn/hoi-dap/question/150005.html

ib đưa link rõ ràng :V

24 tháng 1 2022

Ai thích luyện thì luyện

24 tháng 1 2022

a) Xét ΔBEAΔBEA và ΔDCAΔDCA có:

AE = AC (gt)

ˆBAE=ˆDACBAE^=DAC^ (đối đỉnh)

AB = AD (gt)

⇒ΔBEA=ΔDCA⇒ΔBEA=ΔDCA (c.g.c)

⇒BE=CD⇒BE=CD (2 cạnh t/ư)

b) Ta có: BM=12BEBM=12BE (M là tđ)

DN=12CDDN=12CD (N là tđ)

mà BE = CD ⇒BM=DN⇒BM=DN

Vì ΔBEA=ΔDCAΔBEA=ΔDCA (câu a)

⇒ˆEBA=ˆCDA⇒EBA^=CDA^ (so le trong)

hay ˆMBA=ˆNDAMBA^=NDA^

Xét ΔABMΔABM và ΔADNΔADN có:

AB = AD (gt)

ˆMBA=ˆNDAMBA^=NDA^ (c/m trên)

BM = DN (c/m trên)

⇒ΔABM=ΔADN(c.g.c)⇒ΔABM=ΔADN(c.g.c)

⇒ˆBAM=ˆDAN⇒BAM^=DAN^ (2 góc t/ư)

mà ˆDAN+ˆNAB=180oDAN^+NAB^=180o (kề bù)

⇒ˆBAM+ˆNAB=180o⇒BAM^+NAB^=180o

⇒M,A,N⇒M,A,N thẳng hàng.

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
7 tháng 3 2019

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo link bài làm tương tự nhé!