Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
Xét ΔFBH vuông tại F và ΔFCA vuông tại F có
góc FBH=góc FCA
=>ΔFBH đồng dạng vơi ΔFCA
=>FH/FA=BH/AC
=>FH*AC=BH*FA
b: Xét tứ giác BHCK có
I là trung điểm chung của BC và HK
=>BHCK là hình bình hành
=>CK//BH
=>CK vuông góc AC
=>AK là đường kính của (O)
Xet ΔAKC vuông tại C và ΔAHF vuông tại F có
góc AKC=góc AHF(=góc ABD)
=>ΔAKC đồng dạng với ΔAHF
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
b: Xét tứ giác BHCK có
I là trung điểm chung của BC và HK
=>BHCK là hbh
=>BH//CK và BK//CH
=>CK vuông góc AC
Xét ΔACK vuông tại C và ΔAFHvuông tại F có
góc CAK=góc FAH
=>ΔACK đồng dạng với ΔAFH
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
cau c cm tg feh dong dang voi tg bhc do co goc fhe bang bhc(dd) va co fh/bh=he/hc vi fh/he= bh/hc do tg bfh dong dang hec
a) Xét \(\Delta CEH\)và \(\Delta CFA\)có:
\(\widehat{CEH}=\widehat{CFA}=90^0\)
\(\widehat{ACF}\) chung
suy ra: \(\Delta CEH~\Delta CFA\) (g.g)
b) Xét \(\Delta FHB\)và \(\Delta EHC\)có:
\(\widehat{HFB}=\widehat{HEC}=90^0\)
\(\widehat{FHB}=\widehat{EHC}\)(đối đỉnh)
suy ra: \(\Delta FHB~\Delta EHC\) (g.g)
\(\Rightarrow\)\(\frac{FH}{EH}=\frac{HB}{HC}\) \(\Rightarrow\)\(FH.HC=HB.HE\)
c) \(\frac{FH}{EH}=\frac{HB}{HC}\)(cmt) \(\Rightarrow\)\(\frac{FH}{HB}=\frac{EH}{HC}\)
Xét \(\Delta HFE\)và \(\Delta HBC\)có:
\(\frac{FH}{HB}=\frac{EH}{HC}\)
\(\widehat{EHF}=\widehat{CHB}\) (dd)
suy ra: \(\Delta HFE~\Delta HBC\)
\(\Rightarrow\)\(\widehat{FEH}=\widehat{BCH}\)