Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)
\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)
c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
B1 :
a) \(\sqrt{1,2.270}=\sqrt{0,4.3.90.3}=3\sqrt{36}=3.6=18\)
\(\sqrt{55.77.35}=\sqrt{5.11.7.11.7.5}=\sqrt{25.49.212}=\sqrt{25}.\sqrt{49}.\sqrt{121}=5.7.11=385\)
b) \(\left(\sqrt{3}-\sqrt{2}\right)^2=3-2.\sqrt{3}.\sqrt{2}+2=5-2\sqrt{6}\)
\(\left(3\sqrt{2}-1\right)\left(3\sqrt{2}+1\right)=3\sqrt{2}.3\sqrt{2}+3\sqrt{2}-3\sqrt{2}-1=18-1\)
\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-2\right)=\sqrt{6}.\sqrt{3}-2\sqrt{6}+2\sqrt{3}-4=\sqrt{18}-2\sqrt{6}+2\sqrt{3}-4\)\(=3\sqrt{2}-2\sqrt{6}+2\sqrt{3}-4\)
\(c,\left(\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{2}{3}}\right)=\dfrac{\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{3-2}{\sqrt{2}\sqrt{3}}\) = \(\dfrac{1}{\sqrt{6}}\)
\(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right).\sqrt{6}=\sqrt{\dfrac{8}{3}}.\sqrt{6}-\sqrt{24}.\sqrt{6}+\sqrt{\dfrac{50}{3}}.\sqrt{6}\) = \(\dfrac{\sqrt{8}.\sqrt{6}}{\sqrt{3}}-\sqrt{144}+\dfrac{\sqrt{50}.\sqrt{6}}{\sqrt{3}}=\dfrac{\sqrt{48}}{\sqrt{3}}-12+\dfrac{\sqrt{300}}{\sqrt{3}}=\sqrt{\dfrac{48}{3}}-12+\sqrt{\dfrac{300}{3}}=4-12+10=2\)
B2 :
a) \(\sqrt{\dfrac{1}{8}}.\sqrt{2}.\sqrt{125}.\sqrt{\dfrac{1}{5}}=\sqrt{\dfrac{1}{8}.2.125.\dfrac{1}{5}}=\sqrt{\dfrac{25}{4}}=\dfrac{5}{2}\)
\(\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2+\sqrt{2}-\sqrt{2}-1}=1\)
b) \(\sqrt{\left(\sqrt{2}-3\right)^2}.\sqrt{11+6\sqrt{2}}=\left|\sqrt{2}-3\right|.\sqrt{2+6\sqrt{2}+9}=\left(\sqrt{2}-3\right).\sqrt{\left(\sqrt{2}+3\right)^2}=\left(\sqrt{2}-3\right)\)\(\left(\sqrt{2}+3\right)=2+3\sqrt{2}-3\sqrt{2}-9=-7\)
\(\sqrt{\left(\sqrt{3}-3\right)^2}.\sqrt{\dfrac{1}{3-\sqrt{3}}}=\left|\sqrt{3}-3\right|.\dfrac{1}{3-\sqrt{3}}=-\left(3-\sqrt{3}\right).\left(\dfrac{1}{3-\sqrt{3}}\right)=-1\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
b: \(=\left(\sqrt{ab}+\dfrac{2\sqrt{ab}}{a}-\sqrt{\dfrac{a^2+1}{ab}}\right)\cdot\sqrt{ab}\)
\(=ab+\dfrac{2ab}{a}-\sqrt{a^2+1}=ab+2b-\sqrt{a^2+1}\)
c: \(=2\sqrt{6b}-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)
\(=2\sqrt{6b}-18\sqrt{2}+20\sqrt{3}-4\sqrt{3}\)
\(=2\sqrt{6n}-18\sqrt{2}+16\sqrt{3}\)
d: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)
a) \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{2-\sqrt{3}}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+2\sqrt{12}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+4\sqrt{3}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(8+4\sqrt{3}\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}\)
\(=\sqrt{\left(4-3\right)\cdot4}\)
\(=\sqrt{1\cdot4}\)
\(=\sqrt{4}\)
\(=2\)
b) \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(5\sqrt{2}-7\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-5\sqrt{2}+7\)
\(=0+14\)
\(=14\)
c) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
dài quá ==' cả d, e, f nữa ==' có j rảnh lm cho nhé :D
\(a.\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{3}.\sqrt{3}}{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{6}-\dfrac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{3\sqrt{2}-3\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{-3\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=-3\) \(b.\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)=\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)=8-3=5\) \(c.\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}=\dfrac{2\sqrt{5}}{4}.\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\) \(d.\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)=\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)=9-a\)
\(a.\dfrac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=\dfrac{\left(2+\sqrt{3}\right)\sqrt{3-2\sqrt{3}+1}}{\sqrt{3+2\sqrt{3}+1}}=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\sqrt{3}+1}=\dfrac{2\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{3-1}=4-3=1\)
\(b.\dfrac{\left(\sqrt{5}-1\right)^3}{\sqrt{5}-2}=\dfrac{5\sqrt{5}-15+3\sqrt{5}-1}{\sqrt{5}-2}=\dfrac{8\sqrt{5}-16}{\sqrt{5}-2}=\dfrac{8\left(\sqrt{5}-2\right)}{\sqrt{5}-2}=8\)
\(c.\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left[\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)+\left(\sqrt{2}-1\right)^2\right]=2\left(3+1+3\right)=2.7=14\)
\(d.\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5+2\sqrt{5}+1}}{2}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{2}=\dfrac{2}{2}=1\)
(bài 1) a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\) = \(\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{25-24}\)
= \(\dfrac{-4\sqrt{6}}{1}\) = \(-4\sqrt{6}\)
b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\) = \(\sqrt{\left(\sqrt{5}+1\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{3}}\)
= \(\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\) = \(\sqrt{5}+1-\sqrt{5}+1\) = \(2\)
c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\) = \(\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)
= \(\sqrt{6}.\sqrt{16}\) = \(4\sqrt{6}\)
d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
= \(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
= \(\sqrt{3}+2+\sqrt{2}-\dfrac{1}{2-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}+2+\sqrt{2}\right)\left(2-\sqrt{3}\right)-1}{2-\sqrt{3}}\)
= \(\dfrac{2\sqrt{3}-3+4-2\sqrt{3}+2\sqrt{2}-\sqrt{6}-1}{2-\sqrt{3}}\)
= \(\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}}\) = \(\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{2}}\) = \(\sqrt{2}\)
e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\) = \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\)
= \(\dfrac{4}{1+\sqrt{3}}-\sqrt{3}\) = \(\dfrac{4-\sqrt{3}-3}{1+\sqrt{3}}\) = \(\dfrac{1-\sqrt{3}}{1+\sqrt{3}}\)
= \(\dfrac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\) = \(\dfrac{1-2\sqrt{3}+3}{-2}\) = \(\dfrac{4-2\sqrt{3}}{-2}\)
= \(\dfrac{-2\left(-2+\sqrt{3}\right)}{-2}\) = \(\sqrt{3}-2\)
bài 2)
a)\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(a+b-2\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}-2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{a\sqrt{a}+-a\sqrt{b}+b\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\) = \(\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\) = \(a-b\)
b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2\left(a-1\right)}{4\sqrt{a}}.\dfrac{-4a}{a-1}\) = \(-2\)
a) Gọi phương trình đường thẳng cần lập là y=ax
Từ giả thiết => \(\dfrac{\sqrt{3}}{2}=\sqrt{3}a\)
=>a\(=\dfrac{1}{2}\)
Chọn C
b)Gọi phương trình đường thẳng cần lập là y=ax+b
Từ giả thiết ta có:\(\left\{{}\begin{matrix}\sqrt{3}+\sqrt{2}=a+b\\3+\sqrt{2}=\sqrt{3}a+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}-3=\left(1-\sqrt{3}\right)a\\a+b=\sqrt{3}+\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\sqrt{3}\\b=\sqrt{2}\end{matrix}\right.\)
Chọn D