K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\sin x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \pi  - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.\)

b) \(\begin{array}{l}\sin x = \sin {55^ \circ } \Leftrightarrow \left[ \begin{array}{l}x = {55^ \circ } + k{.360^ \circ }\\x = {180^ \circ } - {55^ \circ } + k{.360^ \circ }\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {55^ \circ } + k{.360^ \circ }\\x = {125^ \circ } + k{.360^ \circ }\end{array} \right.\\\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\sin x = \frac{{\sqrt 2 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{4}\;\;\;\; \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = \pi  - \frac{\pi }{4} + k2\pi }\end{array}} \right.\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = \frac{{3\pi }}{4} + k2\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.\;\)

b)

\(\begin{array}{l}\sin 3x =  - \sin 5x\;\;\;\\\; \Leftrightarrow \,\,\,\sin 3x + \sin 5x = 0\;\;\;\;\;\;\\ \Leftrightarrow \,\,\,2\sin 4x\cos x = 0\;\end{array}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 4x = 0}\\{\cos x = 0}\end{array}\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 4x = \sin 0}\\{\cos x = \cos \frac{\pi }{2}}\end{array}} \right.\;\;\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4x = k\pi }\\{x = \frac{\pi }{2} + k\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.} \right.\)

6 tháng 8 2021

\(a,sin2x-2sinx+cosx-1=0\)

\(\Leftrightarrow2sinxcosx-2sinx+cosx-1=0\)

\(\Leftrightarrow2sinx\left(cosx-1\right)+cosx-1=0\)

\(\Leftrightarrow\left(cosx-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=1\\sinx=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2k\pi\\x=\frac{-\pi}{6}+2k\pi\end{cases}}}\)

\(b,\sqrt{2}\left(sinx-2cosx\right)=2-sin2x\)

\(\Leftrightarrow\sqrt{2}sinx-2\sqrt{2}cosx-2+2sinxcosx=0\)

\(\Leftrightarrow\sqrt{2}sinx\left(1+\sqrt{2}cosx\right)-2.\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}cosx+1\right)\left(\sqrt{2}sinx-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{-\sqrt{2}}{2}\\sinx=\frac{2\sqrt{2}}{2}\left(l\right)\end{cases}}\)(vì \(-1\le sinx\le1\))

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3\pi}{4}+2k\pi\\x=\frac{5\pi}{4}+2k\pi\end{cases}}\)

6 tháng 8 2021

\(c,\frac{1}{cosx}-\frac{1}{sinx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow\frac{sinx-cosx}{sinx.cosx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow\frac{-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)}{sinx.cosx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow sin2x+1=0\)

\(\Leftrightarrow sin2x=-1\)

\(\Leftrightarrow2x=\frac{3\pi}{2}+2k\pi\)

\(\Leftrightarrow x=\frac{3\pi}{4}+k\pi\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

\(a)\;sinx = \frac{{\sqrt 3 }}{2}\)

Vì \(sin\frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(sinx = \frac{{\sqrt 3 }}{2} \Leftrightarrow sin\frac{\pi }{3} = sin\frac{\pi }{3}\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \pi  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

Vậy phương trình có nghiệm là \(x = \frac{\pi }{3} + k2\pi \) hoặc \(x = \frac{{2\pi }}{3} + k2\pi \)\(,k \in \mathbb{Z}\).

\(\begin{array}{l}b)\;sin(x + {30^o}) = sin(x + {60^o})\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^o} = x + {60^o} + k{360^o},k \in \mathbb{Z}\\x + {30^o} = {180^o} - x - {60^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow x = {45^o} + k{180^o},k \in \mathbb{Z}.\end{array}\)

Vậy phương trình có nghiệm là \(x = {45^o} + k{180^o},k \in \mathbb{Z}\).

18 tháng 4 2016

Từ phương trình ban đầu ta có :

\(\Leftrightarrow\cos x+\sqrt{3}\sin x=2\sin3x\)

\(\Leftrightarrow\frac{1}{2}\cos x+\frac{\sqrt{3}}{2}\sin x=\sin3x\)

\(\Leftrightarrow\sin\left(x+\frac{\pi}{6}\right)=\sin3x\)

\(\Leftrightarrow\begin{cases}3x=x+\frac{\pi}{6}+k2\pi\\3x=\frac{5\pi}{6}-x+k2\pi\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{24}+k\frac{\pi}{2}\end{cases}\)

Vậy phương trình có các nghiệm \(x=\frac{\pi}{12}+k\pi,x=\frac{5\pi}{24}+k\frac{\pi}{2}\)

15 tháng 4 2016

hạ bậc con đầu tiên, biển đổi  ra nhá!

2.\(\frac{1+\cos X}{2}\)\(\sqrt{3}\). sin X= 1+ 2.sin 3x

<=> cosx+ \(\sqrt{3}\)sinx= 2 sin 3x ( chia cả 2 vế cho 2)

<=>\(\frac{1}{2}\) cosx+ \(\frac{\sqrt{3}}{2}\)sinx= sin 3x

<=> sin( π/6 + x) = sin 3x

<=>  2 trường hợp

1. π/6+ x= 3x+ k2π

2. là π/6+ x= π- 3x+ k2π       với kϵ Z

<=>\(\begin{cases}x=\frac{\pi}{12}+k\pi\\x=-\frac{5\pi}{12}+k\pi\end{cases}k\in Z}\)

NHÁ

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Vì \(\sin \frac{\pi }{6} = \frac{1}{2}\) nên ta có phương trình \(sin2x = \sin \frac{\pi }{6}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{6} + k2\pi \\2x = \pi  - \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k\pi \\x = \frac{{5\pi }}{{12}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

\(\begin{array}{l}b,\,\,sin(x - \frac{\pi }{7}) = sin\frac{{2\pi }}{7}\\ \Leftrightarrow \left[ \begin{array}{l}x - \frac{\pi }{7} = \frac{{2\pi }}{7} + k2\pi \\x - \frac{\pi }{7} = \pi  - \frac{{2\pi }}{7} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\pi }}{7} + k2\pi \\x = \frac{{6\pi }}{7} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

\(\begin{array}{l}\;c)\;sin4x - cos\left( {x + \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow sin4x = cos\left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow sin4x = \sin \left( {\frac{\pi }{2} - x - \frac{\pi }{6}} \right)\\ \Leftrightarrow sin4x = \sin \left( {\frac{\pi }{3} - x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{3} - x + k2\pi \\4x = \pi  - \frac{\pi }{3} + x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{15}} + k\frac{{2\pi }}{5}\\x = \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

6 tháng 4 2016

Điều kiện \(\sin x\ne\frac{\sqrt{3}}{2};\frac{\sin x-2\sqrt{3}\cos^2\frac{x}{2}+\sqrt{3}}{2\sin x+\sqrt{3}}=0\) \(\Leftrightarrow\sin x-\sqrt{3}\cos x=0\)

              \(\Leftrightarrow\frac{1}{2}\sin x-\frac{\sqrt{3}}{2}\cos x=0\Leftrightarrow\cos\left(x+\frac{\pi}{6}\right)=0\)

               \(\Leftrightarrow x=\frac{\pi}{3}+k\pi,k\in Z\)

Kết hợp điều kiện ta có \(x=\frac{\pi}{3}+k\pi,k\in Z\) là nghiệm của phương trình

NV
11 tháng 2 2020

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)