K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

3r3reR

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

23 tháng 2 2016

a, vì (x-1)^2 >/ 0 với mọi x

(y-1)^2 >/ 0 với mọi y

=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y

=>(x-1)^2+(y-1)^2+3 >/ 3

Do đó Amax=3

 Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1

(y-1)^2 =0<=>y=1

23 tháng 2 2016

a) x=1,y=1

b) x=3,y=0

3 tháng 7 2018

Bài 1:

a) \(A=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{min}=-1\Leftrightarrow x=2\)

b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)

Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)

\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)

Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)

Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)

Ta có:  \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)

\(\Rightarrow\) C không có giá trị lớn nhất

Vậy C không có giá trị lớn nhất

d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)

Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)

\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)

Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)

3 tháng 7 2018

B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)

\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2

b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)

\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)

B2:

a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)

\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2

b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)

\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)

BT1: Chứng minh 2 biểu thức sau không bằng nhau:a) A=3(x+y)+5x-y và B=x+yb) M=(x-1)^2 và N=x^2+1c) P=x^2-y^2 và Q=x^2+y^2BT2: Tìm giá trị lớn nhất của các biểu thức:a) (x-2012)^2                      b) (5x-2)^2+100c) (2x+1)^2-99                    d) (x^2-36)^6+ly-5l+2015BT3: Tính giá trị biểu thức:  N=3x^2-3xy+2y^2 tại lxl=1; lyl=3BT4: Tìm giá trị của biến số để giá trị của mỡi biểu thức sau bằng 0:a) 9y^2-36...
Đọc tiếp

BT1: Chứng minh 2 biểu thức sau không bằng nhau:

a) A=3(x+y)+5x-y và B=x+y

b) M=(x-1)^2 và N=x^2+1

c) P=x^2-y^2 và Q=x^2+y^2

BT2: Tìm giá trị lớn nhất của các biểu thức:

a) (x-2012)^2                      b) (5x-2)^2+100

c) (2x+1)^2-99                    d) (x^2-36)^6+ly-5l+2015

BT3: Tính giá trị biểu thức:  N=3x^2-3xy+2y^2 tại lxl=1; lyl=3

BT4: Tìm giá trị của biến số để giá trị của mỡi biểu thức sau bằng 0:

a) 9y^2-36                                  c) lx-2l+4

b) (x-1)(x+1)(x^2+1/2)                  d) (2y+m)(3y-m) với m là hằng số

BT5: Tính giá trị nhỏ nhất của các biểu thức sau:

a) (x-3)^2+(y-1)^2+5

b) lx-3l+x^2+y^2+1

c) lx-100l+(x-y)^2+100

BT6: Tính giá trị của các biểu thức:

a) x^3-6x^2-9x-3 với x=-2/3                        b)  2a-5b/a-3b với a/b=3/4

c) 3a-b/2a+7 +3b-a/2b-7 với a-b=7 (a;b\(\ne\)-3,5)

BT7: Cho 2 biểu thức: P9x)=x^4-2ax^2+a^2 ; Q(x)=x^2+(3a+1)+a^2.

Xác định giá trị hằng số a sao cho giá trị P(x0 tại x=1 bằng giá trị của Q(x) tại x=3

BT8*: Với giá trị nào của biến số thì biểu thức sau có giá trị lớn nhất:

a) P(x)=3/(x-2)^2+1                               b) Q(x,y)=3-(x+1)^2-(y-2)^2

BT9*: Với giá trị nào của biến số thì biểu thức sau có giá trị nhỏ nhất:

a) P(x,y)=(x-1)^2+(y+1/2)^2-10               b) Q(x)=29x-1)^2+1/(x-1)^2+2

(Bài đánh dấu "*" là bài khó)

Các bạn làm ơn giúp mình. Mình cần gấp T-T

Các bạn muốn làm bài nào trong 9 bài trên cũng được, mình sẽ tích cho.

 

 

0
14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

25 tháng 4 2020

A = ( x - 2 )2 + 2019 

    ( x-  2 )2 \(\ge0\forall x\)

=> ( x - 2)2 + 2019 \(\ge2019\)

=> A \(\ge2019\)

Dấu " = " xảy ra <=> ( x - 2)2 =0

                                    <=> x = 2 

b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình 

c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020 

( 3-x )100 \(\ge0\forall x\)

=> - ( 3-x)100 \(\le0\forall x\)

Tương tự : - 3.( y+2)100 \(\le0\forall y\)

=> C \(\le2020\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

25 tháng 4 2020

@Shadow@ Đề câu b) đúng rồi đó

\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)

ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)

=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)