K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

I don't now

tk nhé

bye

xin đó

28 tháng 2 2018

Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2

Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2

suy ra 13 giao thừa - 11 giao thừa chia hết cho 2

xin các bạn k cho mình nhé

3 tháng 2 2019

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

13 tháng 1 2021

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2
1. a) Co 3 so  tu nhien nao ma tong cua chung tan cung la 4 , tich cua chung tan cung la 1 hay khong ? hay giai thich vi sao .    b) Co ton tai hay khong 4 so tu nhien ma tong cua chung va tich cua chung deu la so le ?2. Chung minh rang neu viet them vao dang sau mot so tu nhien co hai chu so gom chinh hai chu so ay viet nguoc lai thi duoc mot so chia het cho 11.3.Chung minh rang khong ton tai cac so tu nhien a, b,c nao ma a.b.c + a = 333.                                 ...
Đọc tiếp

1. a) Co 3 so  tu nhien nao ma tong cua chung tan cung la 4 , tich cua chung tan cung la 1 hay khong ? hay giai thich vi sao .

    b) Co ton tai hay khong 4 so tu nhien ma tong cua chung va tich cua chung deu la so le ?

2. Chung minh rang neu viet them vao dang sau mot so tu nhien co hai chu so gom chinh hai chu so ay viet nguoc lai thi duoc mot so chia het cho 11.

3.Chung minh rang khong ton tai cac so tu nhien a, b,c nao ma a.b.c + a = 333.

                                    ____   ____   _____

4.Chung minh rang neu ab= 2.cd thi abcd chia het cho 7.

5. Chung minh rang :

   _____

a) abcabc chia het cho 7, 11 ,13  .  

    _______                                                  ____     _____

b) abcdeg chia het cho 23 , 29 va biet rang abc = 2.deg.

                                      ___   ___  ___                              _______

6. Chung minh rang neu ab + cd + eg chia het cho 11 thi abcdeg chia het cho 11.

 

0
9 tháng 2 2017

1) Để \(\overline{7x5y1}⋮3\)thì \(\left(7+x+5+y+1\right)⋮3\)

\(\Rightarrow\left(13+x+y\right)⋮3\)

\(\Rightarrow x+y\in\left\{2;5;8;11;17;20;...\right\}\left(1\right)\)

Vì x và y là số có 1 chữ số

\(\Rightarrow0\le x\le9\)\(0\le y\le9\)

\(\Rightarrow0\le x+y\le18\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x+y\in\left\{2;5;8;11;14;17\right\}\)

Nên ta có bảng giá trị của x, y là:

x + y258111417
x - y444444
x34,5 \(\notin N\)67,5\(\notin N\)96,5\(\notin N\)
y-1\(\notin N\) 2 5 
 loạiloạithỏa mãnloạithỏa mãnloại

Từ bảng giá trị ta thấy các cặp giá trị \(x,y\in N\)để \(\overline{7x5y1}⋮3\)là: 6 và 2; 9 và 5

2)

a) Ta có:

\(\overline{abcabc}\)

\(=\overline{abc}.1000+\overline{abc}\)

\(=\overline{abc}.\left(1000+1\right)\)

\(=\overline{abc}.1001\)

\(=\overline{abc}.7.11.13\)

\(7⋮7\)nên \(\left(\overline{abc}.7.11.13\right)⋮7\left(1\right)\)

\(11⋮11\)nên \(\left(\overline{abc}.7.11.13\right)⋮11\left(2\right)\)

\(13⋮13\)nên \(\left(\overline{abc}.7.11.13\right)⋮13\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\left(\overline{abc}.7.11.13\right)⋮7;11;13\)

Vậy số có dạng \(\overline{abcabc}\)luôn chia hết cho 7; 11; 13.

b) Để \(\frac{\left(a+3\right)\left(a+6\right)}{2}\)là số tự nhiên thì \(\left(a+3\right)\left(a+6\right)⋮2\)

Vì a là số tự nhiên nên a là số chẵn hoặc a là số lẻ

(+) Trường hợp 1: a là số chẵn

=> a + 6 là số chẵn

\(\Rightarrow\left(a+6\right)⋮2\)

\(\Rightarrow\left(a+3\right)\left(a+6\right)⋮2\left(4\right)\)

(+) Trường hợp 2: a là số lẻ

=> a + 3 là số chẵn

\(\Rightarrow\left(a+3\right)⋮2\)

\(\Rightarrow\left(a+3\right)\left(a+6\right)⋮2\left(5\right)\)

Từ (4) và (5) \(\Rightarrow\left(a+3\right)\left(a+6\right)⋮2\)với mọi \(a\in N\)

Vậy \(\frac{\left(a+3\right)\left(a+3\right)}{2}\)là số tự nhiên với mọi \(a\in N\)

3)

a) Vì theo bài ta có 49 điểm \(\in AB\)và không trùng với A, B nên sẽ có 51 điểm trên hình vẽ. Lấy 1 điểm bất kì trong 51 điểm. Nối điểm đó với 50 điểm còn lại ta sẽ được 50 đoạn thẳng.

Cứ làm như vậy với 51 điểm thì số lượng đoạn thẳng được tạo thành là:

         51.50 = 2550 (đoạn thẳng)

Như vậy mỗi đoạn thẳng đã được tính 2 lần nên số đoạn thẳng thực tế có là:

        2550 : 2 = 1275 (đoạn thẳng)

Vậy số lượng đoạn thẳng được tạo nên từ A, B và 49 điểm là 1275 đoạn thẳng.

b) Lấy 1 điểm bất kì trong n điểm. Nối điểm đó với n - 1 điểm còn lại tạo thành n - 1 đường thẳng

Cứ làm như vậy với n điểm thì số lượng đường thẳng được tạo thành là:

         n(n - 1) (đường thẳng)

Nhưng như vậy mỗi đường thẳng đã được tính 2 lần nên số đường thẳng thực tế có là:

         n(n - 1) : 2 (đoạn thẳng)

Mà theo bài có tất cả 1128 đường thẳng nên ta có:

\(n\left(n-1\right):2=1128\)

\(\Rightarrow n\left(n-1\right)=2256\)

\(n\left(n-1\right)=2^4.3.37\)

\(n\left(n-1\right)=48\left(48-1\right)\)

\(\Rightarrow n=48\)

Vậy để tạo thành 1128 đường thẳng thì sẽ có 48 điểm trong đó không có 3 điểm nào thẳng hàng.