K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

c)2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N)

Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D

Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D

Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .

Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau! (đpcm)

d)

N = abcabc = abc x 1001 = abc x (7 x 11 x 13)

=> abcabc chia hết cho 7, cho 11 và cho 13 (đpcm)

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

30 tháng 1 2016

c.          abcabc=abc.1000+abc=abc.1001

Vì 1001 chia hết cho 7; 11 ;13 nên abcabc chia hết 7;11;13

đi rồi tôi làm tiếp

16 tháng 11 2016

Bạn xem ở đây nhé.

Câu hỏi của Lê Nguyễn Bảo Trân - Toán lớp 6 - Học toán với OnlineMath

11 tháng 12 2016

Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa

25 tháng 1 2021

Giả sử \(x\) là ước nguyên tố của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)

\(\Rightarrow a.b⋮x\)và \(a+b⋮x\)

Vì \(a.b⋮x\Rightarrow a⋮x\)hoặc \(b⋮x\)

Vì \(a+b⋮x\Rightarrow a⋮x\)và \(b⋮x\Rightarrow x\inƯC\left(a,b\right)\)

Mà nếu \(a\)và \(b\)nguyên tố cùng nhau ( hay \(\left(a,b\right)=1\)) thì \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow x=1\)không phải là số nguyên tố trái với giả thiết đặt ra

Do đó không tồn tại ước nguyên tố \(x\)của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)

Do đó \(a.b\)và \(a+b\)nguyên tố cùng nhau

\(\left(a.b,a+b\right)=1\)( đpcm )

/ Sai thì bỏ qua nha Hiro /