Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\ge\left|x-2014+2016-x\right|+0=\left|-2\right|+0=2\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2014\\x=2015\\x\le2016\end{matrix}\right.\Rightarrow x=2015\)
Vậy \(MIN_A=2\) khi x = 2015
b, Ta có: \(-y^2\le0\Rightarrow25-y^2\le25\)
\(\Rightarrow8\left(x-2015\right)^2\le25\)
\(\Rightarrow\left(x-2015\right)^2< 4\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2015\right)^2=0\\\left(x-2015\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2015\\x-2015=\pm1\end{matrix}\right.\)
+) Xét \(x=2015\Rightarrow y=\pm5\) ( t/m )
+) Xét \(x=1\Rightarrow y\notin Z\) ( loại )
+) Xét \(x=-1\Rightarrow y\notin Z\) ( loại )
Vậy x = 2015 và \(y=\pm5\)
25-y2= 8 (x-2015)2
=> 8(x-2015)2+ y2 =25 (1)
Vì y2 lớn hơn hoặc bằng 0 với mọi y
8(x-2015)2 lớn hơn hoặc bằng 0 với mọi x
=> 8(x-2015)2 lớn hơn hoặc bằng 25
=> (x-2015)2 > hoặc bằng \(\dfrac{25}{8}\)
=>( x-2015)2 = 1 thay vào (1) => y2 = 17 ( loại)
hoặc (x-2015)2 = 0 thay vào (1) => y2 = 25 => yϵ { -5; 5}
=> x= 2015
Vậy x= 2015 ; y=5
hoặc x= 2015 ; y = -5
(3x - 1)^2016 + (5y - 3)^2016 < 0 (1)
có (3x - 1)^2016 > 0
(5y - 3)^2018 > 0
=> (3x-1)^2016 + (5y - 3)^2018 > 0 và (1)
=> (3x - 1)^2016 + (5y - 3)^2016 = 0
=> 3x - 1 = 0 và 5y - 3 = 0
=> x = 1/23 và y = 3/5
a) Có \(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)
Để A đạt giá trị nguyên thì: \(\sqrt{x}-2\in U\left(4\right)\)
TH1: \(\sqrt{x}-2=1\Rightarrow x=9\)
TH2: \(\sqrt{x}-2=-1\Rightarrow x=1\)
TH3: \(\sqrt{x}-2=2\Rightarrow x=16\)
TH4: \(\sqrt{x}-2=-2\Rightarrow x=0\)
TH5: \(\sqrt{x}-2=4\Rightarrow x=36\)
TH6: \(\sqrt{x}-2=-4\Rightarrow\) k tồn tại x
Vậy:...
\(\Leftrightarrow\frac{x^{2014}}{a^2+b^2+c^2+d^2}+\frac{y^{2014}}{a^2+b^2+c^2+d^2}+\frac{z^{2014}}{a^2+b^2+c^2+d^2}+\frac{t^{2014}}{a^2+b^2+c^2+d^2}\)
\(-\frac{x^{2014}}{a^2}-\frac{y^{2014}}{b^2}-\frac{z^{2014}}{c^2}-\frac{t^{2014}}{d^2}=0\)
\(\Leftrightarrow\left(\frac{x^{2014}}{a^2+b^2+c^2+d^2}-\frac{x^{2014}}{a^2}\right)+\left(\frac{y^{2014}}{a^2+b^2+c^2+d^2}-\frac{y^{2014}}{b^2}\right)+\left(\frac{z^{2014}}{a^2+b^2+c^2+d^2}-\frac{z^{2014}}{c^2}\right)\)
\(+\left(\frac{t^{2014}}{a^2+b^2+c^2+d^2}-\frac{t^{2014}}{d^2}\right)=0\)
\(\Leftrightarrow x^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+\)
\(z^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)
vì a2,b2,c2,d2 lớn hơn hoặc bằng 0
=> \(\hept{\begin{cases}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\end{cases}}và....\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\)
\(\Rightarrow\hept{\begin{cases}x^{2014}=0\\y^{2014}=0\\z^{2014}=0\end{cases}}và..t^{2014}=0\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}và...t=0\)
=> \(\hept{\begin{cases}x^{2015}=0\\y^{2015}=0\\z^{2015}=0\end{cases}}và..t^{2015}=0\Rightarrow x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)
vậy \(x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)
Ta có : \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\)
Suy ra \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-y}{2013-2014}=\dfrac{x-y}{-1}\)