Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left|x+1\right|+\left|y-2\right|\)
\(A=\left|x+1\right|+\left|5-x-2\right|\)
\(A=\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)
Dấu " = " sảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le3\)
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
mk ngu đại số lắm sorry nha Nhưng nếu hình thì mk giải đc
Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),
a) Ta có : \(x-y=3\Rightarrow x=3+y\).
Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)
\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
\(\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
b) Ta có : \(x-y=2\Rightarrow x=2+y\)
Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)
\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)
\(\ge\left|-2y-5+2y+1\right|=4\)
Các câu khác tương tự nhé em !
a) A = | x - 3 | + 1
| x - 3 |≥0
Nên | x - 3 |+1≥1
Dấu = xảy ra khi x-3=0 hay x=3
Vậy GTNN của A=1 khi x=3
b ) B = | 6 - 2x | - 5
| 6 - 2x |≥0
Nên |6-2x|-5≥-5
Dấu = xảy ra khi 6-2x=0 hay x=3
Vậy GTNN của B=-5 khi x=3
c ) C = - ( x + 1 ) 2 - |2y - y | + 11
Vì ( x + 1 ) 2≥0
Nên -( x + 1 ) 2≤0
Vì |2y - y |≥0
Nên - |2y - y |≤0
C = - ( x + 1 ) 2 - |2y - y | + 11 ≤11
Dấu = xảy ra khi x+1=0 và 2y-y=0 hay x=-1;y=0
Vậy GTLN của C=11 khi x=-1 và y=0
d ) D = ( x + 5 )2 + (2y - 6 )2 + 1
Vì ( x + 5 )2 ≥0
(2y - 6 )2 ≥0
D = ( x + 5 )2 + (2y - 6 )2 + 1≥1
Do đó dấu = xảy ra khi x+5=0;2y-6=0 hay x=-5;y=3
Vậy GTNN của D=1 khi x=-5;y=3
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)
\(\ge\left|x+1+y-2\right|\)
\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0
Vậy Min A = 4 <=> (x + 1)(y - 2) \(\ge\)0