Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)
a/ \(x^2+2x-15< 0\Rightarrow-5< x< 3\)
TH1: \(m=-1\) ko thỏa mãn
TH2: \(m>-1\Rightarrow x\ge\frac{3}{m+1}\)
Để BPT đã cho có nghiệm thì: \(\frac{3}{m+1}< 3\)
\(\Leftrightarrow m+1>1\Rightarrow m>0\)
TH3: \(m< -1\Rightarrow x\le\frac{3}{m+1}\)
Để BPT có nghiệm \(\Rightarrow\frac{3}{m+1}>-5\)
\(\Leftrightarrow3< -5\left(m+1\right)\)
\(\Leftrightarrow5m< -8\Rightarrow m< -\frac{8}{5}\)
Vậy để BPT đã cho có nghiệm thì \(\left[{}\begin{matrix}m>0\\m< -\frac{8}{5}\end{matrix}\right.\)
b/ \(x^2-3x-4\le0\Leftrightarrow-1\le x\le4\)
Xét bpt \(\left(m-1\right)x\ge2\)
TH1: \(m=1\) ko thỏa mãn
TH2: \(m>1\Rightarrow x\ge\frac{2}{m-1}\)
Để BPT có nghiệm \(\Rightarrow4\le\frac{2}{m-1}\)
\(\Rightarrow2\left(m-1\right)\le1\Rightarrow m\le\frac{3}{2}\)
Kết hợp điều kiện \(\Rightarrow1< m\le\frac{3}{2}\)
TH3: \(m< 1\Rightarrow x\le\frac{2}{m-1}\)
Để BPT có nghiệm \(\Rightarrow\frac{2}{m-1}\ge-1\)
\(\Leftrightarrow2\le1-m\Rightarrow m\le-1\)
Vậy để BPT đã cho có nghiệm thì: \(\left[{}\begin{matrix}m\le-1\\1< m\le\frac{3}{2}\end{matrix}\right.\)
Lý thuyết cơ bản:
BPT: \(f\left(x\right)\le f\left(m\right)\) có nghiệm \(x\in\left(a;b\right)\) khi và chỉ khi \(f\left(m\right)\ge\min\limits_{\left(a;b\right)}f\left(x\right)\)
BPT: \(f\left(x\right)\le f\left(m\right)\) nghiệm đúng với mọi \(x\in\left(a;b\right)\) khi và chỉ khi \(f\left(m\right)\ge\max\limits_{\left(a;b\right)}f\left(x\right)\)
Nói tóm lại: có nghiệm thì so sánh với min, nghiệm đúng với mọi x thì so sánh với max
Trong trường hợp \(f\left(x\right)\ge f\left(m\right)\) thì làm ngược lại.
Ta có: \(x^2-3x-4\le0\Leftrightarrow-1\le x\le4\)
Xét \(x^3-3\left|x\right|x\ge m^2-6m\) trên \(\left[-1;4\right]\)
BPT có nghiệm khi \(f\left(m\right)=m^2-6m\le\max\limits_{\left[-1;4\right]}f\left(x\right)\) với \(f\left(x\right)=x^3-3\left|x\right|x\)
- Với \(-1\le x\le0\Rightarrow f\left(x\right)=x^3+3x^2=x^3+3x^2-2+2\)
\(=\left(x+1\right)\left[\left(x+1\right)^2-3\right]+2\le2\)
- Với \(0\le x\le4\Rightarrow f\left(x\right)=x^3-3x^2=x^3-3x^2-16+16\)
\(=\left(x-4\right)\left(x^2+x+4\right)+16\le16\)
So sánh 2 giá trị 2 và 16 ta suy ra \(\max\limits_{\left[-1;4\right]}\left(x^3-3\left|x\right|x\right)=f\left(4\right)=16\)
\(\Rightarrow m^2-6m\le16\Leftrightarrow m^2-6m-16\le0\)
\(\Leftrightarrow-2\le m\le8\)
\(x^2-4x-5>0\Rightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)
Xét pt: \(x^2-\left(m-1\right)x-m\le0\)
\(\Leftrightarrow\left(x+1\right)\left(x-m\right)\le0\) (1)
- Với \(m=-1\) hệ BPT vô nghiệm
- Với \(m>-1\Rightarrow\left(1\right)\Leftrightarrow-1< x< m\)
Để hệ BPT có nghiệm \(\Leftrightarrow m>5\)
- Với \(m< -1\) \(\Leftrightarrow\left(1\right)\Leftrightarrow m< x< -1\)
Hệ BPT luôn có nghiệm
Vậy để hệ BPT có nghiệm thì \(\left[{}\begin{matrix}m>5\\m< -1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)
\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)