K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

A=2010+20102+20103+.....+20102010

A=2010(1+2010)+20103(1+2010)+........+20109(1+2010)

A=2010.2011+20103.2010+....+20109.2011

A=2011(2010+....+20109) chia hết cho 2011

=> A chia hết cho 2011(đpcm)

9 tháng 2 2021

A = 2010 + 20102 + 20103 + ... + 20102010

A = 2010 . ( 1 + 2010 ) + 20103 . (1 + 2010 ) + ... + 20109 . ( 1 + 2010 )

A = 2010 . 2011 + 20103 . 2011 + ... + 20109 . 2011

A = 2011 . ( 2010 + 20103 + ... + 20109 )

Mà 2011 . ( 2010 + 20103 + ... + 20109 ) \(\in\)2011

=> A \(\in\)2011

๖²⁴ʱ𝒄𝒉𝒖́𝒄 𝒆𝒎 𝒉𝒐̣𝒄 𝒕𝒐̂́𝒕✟ᴾᴿᴼシ

A= (x+2009) .(x+2010)chứng minh A chia hết cho 2 và x là số tự nhiên?các bạn xem trong ba cách, cách nào đúng, chính xác, điểm cao,...cách 1:vì x là số tự nhiên nên x sẽ có 2 trường hợpTrường hợp 1: x là số lẻx+2009 là số chẵnx+ 2010 là số lẻ( x+2009) chia hết cho 2 . (vì ko có dấu chia hết nên mình ghi như thế nha! những cái sau cũng thế)suy ra: (x+2009).(x+2010) chia hết cho 2Trường hợp 2: x là số...
Đọc tiếp

A= (x+2009) .(x+2010)

chứng minh A chia hết cho 2 và x là số tự nhiên?

các bạn xem trong ba cách, cách nào đúng, chính xác, điểm cao,...

cách 1:

vì x là số tự nhiên nên x sẽ có 2 trường hợp

Trường hợp 1: x là số lẻ

x+2009 là số chẵn

x+ 2010 là số lẻ

( x+2009) chia hết cho 2 . (vì ko có dấu chia hết nên mình ghi như thế nha! những cái sau cũng thế)

suy ra: (x+2009).(x+2010) chia hết cho 2

Trường hợp 2: x là số chẵn

x+2009 là số lẻ

x+ 2010 là số chẵn

(x+2010) chia hết cho 2

suy ra: (x+2009). (x+2010) chia hết cho 2

vậy A chia hết cho 2

Cách 2:

vì x là số tự nhiên nên x sẽ có 2 dạng: 2.a hoặc 2.b +1

trường hợp 1:

A= (x+2009).(x+2010)

A=(2.a+2009).(2.a+2010)

A=(2.a+2009).(2.a+2.1005)

A=(2.a+2009).2.( a+1005)

suy ra:A chia hết cho 2

trường hợp 2:

A=(x+2009).(x+2010)

A=(2.b+1+2009).(2.b+1+2010)

A=(2.b+2010).(2.b+2011)

A=(2.b+2.1005).(2.b+2011)

A=2.(b+1005).(2.b+2011)

suy ra: A chia hết cho 2

vậy A chia hết cho 2

cách 3:

A=(x+2009).(x+2010)

đây là hai số tự nhiên liên tiếp

mà tích của hai số tự nhiên liên tiếp sẽ chia hết cho 2 vì một trong hai số có một số chẵn

vậy A chia hết cho 2

 

 

1
15 tháng 12 2017

hi mới hỏi là đã có ngay

1)

a)     A = 21 + 22 + … + 22010

    = (21 + 22) + (23 + 24) + … + (22009 + 22010)

    = 2(1 + 2) + 23(1 + 2) + … + 22009(1 + 2)

    = 2.3 + 23.3 + … + 22009.3

Vì 3 chia hết cho 3 nên A chia hết cho 3.

  A = 21 + 22 + … + 22010

     = (21 + 22 + 23) + (24 + 25 + 26) + … + (22008 + 22009 + 22010)

     = 2(1 + 2 + 22) + 24(1 + 2 + 22) + … + 22008(1 + 2 + 22)

     = 2.7 + 24.7 + … + 22008.7

Vì 7 chia hết cho 7 nên A chia hết cho 7.

b)   B = 31 + 32 + … + 32010

          = (31 + 32 )+ (33 + 34) + (35 + 36) + … + (32009 + 32010)

          = 3(1 + 3) + 33(1 + 3) + … + 32009(1 + 3)

          = 3.4+ 33.4 + … + 32009.4

Vì 4 chia hết cho 4 nên B chia hết cho 4.

B = 31 + 32 + … + 32010

    = (31 + 32 + 33) + (34 + 35 + 36) + … + (32008 + 32009 + 32010)

    = 3(1 + 3 + 32) + 34(1 + 3 + 32) + … + 32008(1 + 3 + 32)

    = 3.13 + 34.13 + … + 32008.13

Vì 13 chia hết cho 13 nên B chia hết cho 13.

c)     C = 51 + 52 + … + 52010

           = (51 + 52 +53 + 54) + … + (52007 + 52008 + 52009 + 52010)

           = 5(1 + 5 + 52 + 53) + … + 52007(1 + 5 + 52 + 53)

           = 5.156 + … + 52007.156

Vì 156 chia hết cho 6, 12 nên C chia hết cho 6 và 12.

2) 

a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

2)a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

30 tháng 12 2016

Híc híc mình trả lời rồi mà nó đi đâu mất rồi!

30 tháng 12 2016

Thôi trả lời lại vậy;

Bài 1:

a)

* A = 21 + 22 + 23 + ... + 22010

A = (21 + 22) +(23 + 24) + ... + (22009 + 22010)

A = 21. (1 + 2) + 23. (1 + 2) + ... + 22009. ( 1 + 2)

A = 21. 3 + 23. 3 + ... + 22009. 3

A = 3. (21 + 23 + ... + 22009)

Vì 3 \(⋮\)3 nên 3. (21 + 23 + ... + 22009) \(⋮\)3

=> A \(⋮\)3

Vậy A \(⋮\)3.

* A = 21 + 22 + 23 + ... + 22010

A = (21 + 22 + 23) + (24 + 25 + 26) + ... (22008 + 22009 + 22010)

A = 21. (1 + 2 + 22) + 24. (1 + 2 + 22) + ... + 22008. ( 1 + 2 + 22)

A = 21. 7 + 24. 7 + ... + 22008. 7

A = 7. (21 + 24 + ... + 22008)

Vì 7 \(⋮\)7 nên 7. (21 + 24 + ... + 22008) \(⋮\)7

=> A \(⋮\)7

Vậy A \(⋮\)7

b) B = 31 + 32 + 33 + ... + 32010

B = (31 + 32) + ( 33 + 34) + ... + ( 32009 + 32010)

B = 31. (1+ 3) + 33. (1 + 3) + ... + 32009. ( 1 + 3)

B = 31. 4 + 33.4 + ... + 32009.4

B = 4. (31 + 33 + ... + 32009)

Vì 4 \(⋮\)4 nên 4. (31 + 33 + ... + 32009) \(⋮\)4

=> B \(⋮\)4

Vậy B \(⋮\)4

...... Mấy phần còn lại bạn làm tương tự nhé!

Còn bài 2 để mình làm sau tại vì mình mỏi tay quá!

Chúc bạn học tốt!

9 tháng 2 2016

bài 2 câu b,:Cũng thế nhưng xét trực tiếp 3 số khác: 
* Xét: p # 3 
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số

Biết mỗi bài đó thôi

8 tháng 12 2016

A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7

A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)

A=2011+2010 mũ 2.2011+...2010 mũ 6.2011

A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011

20 tháng 3 2015

A=2010^1+2010^2+2010^3+..........................................+2010^2010

vay suy ra co tat ca 2010 s hang vay ghep cap 

A=2010(1+2010)+2010^3(1+2010)+..........................+2010^9(1+2010)

A=2010.2011+2010^3.2011+............................+2010^9.2011

A=2011(2010+........2010^9) chia het 2011

suy ra A chia het cho 2011