Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 2B=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
B=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+..+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
=>2B-B=\(1-\frac{1}{2^{99}}\)
mà 1/2^99>0 nên B<1 (đpcm)
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
a, \(A=\frac{1}{2}+\left[\frac{1}{2}\right]^2+\left[\frac{1}{2}\right]^3+...+\left[\frac{1}{2}\right]^{99}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right]-\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right]\)
\(A=1-\frac{1}{2^{99}}\)
Do đó A < 1
b, \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(3B-B=\left[1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]-\left[1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right]\)
\(2B=1-\frac{1}{3^{99}}\)
\(B=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
Ta có:1/(3^n)+1/(3^(n+1))=2/(3^(n+1))
Áp dụng ta có:
1-1/3=2/3
1/3-1/(3^2)=2/(3^2)
1/(3^2)-1/(3^3)=2/(3^3)
....
1/(3^98)-1/(3^99)=2/(3^99).
Cộng từng vế các phép tính với nhau ta có:
1-1/(3^99)=2M.
Mà 1-1/(3^99)<1 nên 2M<1 nên M<1/2(đpcm)