K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 8 2021
cho a,b,c,d,n thuộc N*; biết ab=cd. Chứng minh rằng: a^n + b^n + c^n + d^n là hợp số.
ab=cd`
`⇔a/c=d/b `
Đặt `a/c=d/b=k`
`⇒a=ck;d=bk `
Ta có:
`A=a^n+b^n+c^n+d^n`
`⇔A=(ck)^n+b^n+c^n+(bk)^n`
`⇔A=c^n . k^n+b^n+c^n+b^n . k^n`
`⇔A=c^n(k^n+1)+b^n(k^n+1)`
`⇔A=(c^n+b^n)(k^n+1)`
`⇒A` là hợp số
10 tháng 10 2017
(a^m)^n= a^m. a^m....a^m( n số)= (a.a.a...a).(a.a.a.a...a)......(a.a.a..a)(có n tích a.a...a, có m atrong 1 tích)
=> (a.a...a)......(a.a...a) = a.a.a.a.....a => số số a nhân với nhau sẽ bằng m.n = a^ m.n
a^n .b^n = a.a.a...a(n số) . b.b...b ( n số) = (a.b) . (a.b)....(a.b) (n tích ) => = (a.b)^n
a) (ab)n = ab.ab.ab.....ab (n thừa số ab) = (a.a.a.....a).(b.b.b....b) (n thừa số a ; n thừa số b) = an.bn
Câu b bạn chứng minh tương tự.