K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 12 2016

4. x + 16 chia hết cho x + 1

Ta có

x + 16 = ( x + 1 ) + 15

Mà x + 1 chia hết cho 1

=> 15 phải chia hết cho x + 1

=> x + 1 thuộc Ư(15)

Ư(15) = { 1 ; 15 ; 3 ; 5 }

TH1 : x + 1 = 1 => x = 1 - 1 = 0

TH2 : x + 1 = 15 => x = 15 - 1 = 14

TH3 : x + 1 = 3 => x = 3 - 1 = 2

TH4 : x + 1 = 5 => x = 5 - 1 = 4

Vậy x = 0 ; 14 ; 4 ; 2

 

21 tháng 12 2016

1

a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9

Mà 963 , 2439 , 361 chia hết cho 9

=> x cũng phải chia hết cho 9

Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9

Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9

b. Tương tự phần trên nha

Giúp mị vs, cần rất gấpCho A = 2.4.6.8.10.12 - 40. Hỏi A có chia hết cho 6, 8, 20 không, vì sao?Khi chia số tự nhiên a cho 36 ta được số dư là 12. Hỏi a có chia hết cho 4, 9, không, vì sao?Cho a chia hết cho c và b chia hết cho c. Chứng minh rằng : ma+nb chia hết cho c ' ma - nb chia hết cho c với m,n thuộc NChứng mình rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp...
Đọc tiếp

Giúp mị vs, cần rất gấp

Cho A = 2.4.6.8.10.12 - 40. Hỏi A có chia hết cho 6, 8, 20 không, vì sao?

Khi chia số tự nhiên a cho 36 ta được số dư là 12. Hỏi a có chia hết cho 4, 9, không, vì sao?

Cho a chia hết cho c và b chia hết cho c. Chứng minh rằng : ma+nb chia hết cho c ' ma - nb chia hết cho c với m,n thuộc N

Chứng mình rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp không chia hết cho 5.

Chứng minh rằng :

a) Tổng của ba số chẵn liên tiếp thì chia hết cho 6

b) Tổng của ba số lẻ liên tiếp thì không chia hết cho 6

c) Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c

d) P = a + a2 + a+....+ a2n chia hết cho a + 1, n thuộc N

e) Nếu a và b chia cho 7 có cùng một số dư thì hiệu a - b chia hết cho 7

Giúp mk lẹ lẹ đi, mk cần rất gấp gấp lắm luôn, mai kiểm tra 45' mà còn mấy bài này ko bt cách giải.

2
9 tháng 10 2019

ê bạn là antifan hay ARMY thế hở, mà nếu là ARMY thì sao lại để logo thế kia, còn nếu là anti í thì sao lại có chữ ARMY dưới phần logo và nickname hở, m là gì để tao còn biết.

29 tháng 9 2021

A chia hết cho 8 và 20, nhưng ko chia hết cho 6

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)a) Có giá trị là số tự nhiênb) Là phân số tối giảnBài 4: a) Tìm số tự nhiên n để n+15 chia...
Đọc tiếp

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.

Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.

Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)

a) Có giá trị là số tự nhiên

b) Là phân số tối giản

Bài 4: a) Tìm số tự nhiên n để n+15 chia hết cho n+3

b) Tìm số tự nhiên n sao cho 2-1 chia hết cho 7

Bài 5: a) Tìm số dư khi chia (n3-1)111X(n2-1)333 cho n (n thuộc N)

b) Số A chia 7 dư 3, chia 17 dư 12, chia 23 dư 7. Hỏi A chia 2737 dư bao nhiêu?

Bài 6: Cho a * b =45512 . Tìm số dư trong phép chia a+b cho 3,4.

Bài 7: Tìm số dư khi chia (910)11 - (59)10 cho 13

Bài 8: Tìm chữ số hàng đơn vị, hàng chục, hàng trăm của (29)2010

0