K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)

\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)

\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B

=>B/A=1/100

b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)

\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)

\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

=>A/B=25

8 tháng 5 2018

Ta có : A=(299+298+...+2+1-(249+248+...+2+1)250)/249+248+...+2+1

A= \(\dfrac{2^{99}+2^{98}+...+2+1-2^{99}-2^{98}-...-2^{51}-2^{50}}{2^{49}+2^{48}+...+2+1}\)

A=\(\dfrac{2^{49}+2^{48}+...+2+1}{2^{49}+2^{48}+...+2+1}\) = 1

Vậy đa thức A=1

28 tháng 7 2016

a. 5^4.3-4.(15^4-1)

=5^4.3-4.15^4+4

=4-15^4

=-50621

a: \(=625\cdot3-4\cdot\left(15^4-1\right)\)

\(=1875-4\cdot50625+4\)

\(=1879-202500=-200621\)

b: =50+49+48+47+...+2+1

Số số hạng là 50-1+1=50(số)

Tổng của dãy số là:

\(\dfrac{\left(1+50\right)\cdot50}{2}=51\cdot25=1275\)