K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Tham khảo:

a)

- Ta xác định trung điểm 1 cạnh bằng cách gấp sao cho 2 đỉnh của tam giác trùng nhau, khi đó giao của nét gấp đi qua 1 cạnh của tam giác sẽ là trung điểm của cạnh đó

- Rồi từ các trung điểm vừa xác định được ta kẻ các đường trung tuyến của tam giác từ các đỉnh

- Nhận xét : Ta thấy 3 đường trung tuyến trong tam giác này đều sẽ đi qua 1 điểm

b)

- Ta nối dài đoạn AG sao cho AG cắt BC tại 1 điểm

- Ta thấy điểm giao nhau giữa AG và BC chính là trung điểm của BC

- Nên AG là trung tuyến của tam giác ABC

- Ta sẽ sử dụng số đo dựa trên các ô để xét tỉ số giữa các đoạn thẳng

\(\dfrac{{BG}}{{BE}} = \dfrac{2}{3};\dfrac{{CG}}{{CF}} = \dfrac{4}{6};\dfrac{{AG}}{{AD}} = \dfrac{{4.4}}{{6.6}}\)

- Ta thấy sau khi rút gọn các tỉ số ta có :

\(\dfrac{{BG}}{{BE}} = \dfrac{{CG}}{{CF}} = \dfrac{{AG}}{{AD}} = \dfrac{2}{3}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

- Ta có: MB = MC và M nằm giữa B và C nên M là trung điểm của BC.

Do đó, AM có là đường trung tuyến của tam giác ABC

- Ta có:

\(\begin{array}{l}\dfrac{{GA}}{{MA}} = \dfrac{6}{9} = \dfrac{2}{3};\\\dfrac{{GB}}{{NB}} = \dfrac{2}{3};\\\dfrac{{GC}}{{PC}} = \dfrac{2}{3}\end{array}\)

5 tháng 5 2019

tam giác ABC có : BE; CF là trung tuyến và cắt nhau tại I

=> AI là trung tuyến (tc)

mà tam giác ABC cân tại A (Gt)

=> AI là phân giác của góc BAC (đl)

5 tháng 5 2019

a)Xét\(\Delta ABC\)có:\(BE\)là đg trung tuyến xuất phát từ đỉnh\(B\left(GT\right)\)

\(CF\)là đg trung tuyến xuất phát từ đỉnh\(C\left(GT\right)\)

\(BE\)cắt\(CF\)tại\(I\)

\(\Rightarrow AI\)là đg trung tuyến xuất phát từ đỉnh\(A\)(Định lí về tính chất 3 đg trung tuyến của 1\(\Delta\))

\(\Delta ABC\)cân tại\(A\left(GT\right)\)

\(\Rightarrow AI\)vừa là đg trung tuyến vừa là đg p/g của\(\Delta ABC\)(Tính chất của tg cân)

b)Xét\(\Delta ABI\)\(\Delta ACI\)có:

\(AI\)là cạnh chung

\(\widehat{BAI}=\widehat{CAI}\)(\(AI\)là tia p/g của\(\widehat{BAC}\))

\(AB=AC\)(\(\Delta ABC\)cân tại\(A\))

Do đó:\(\Delta ABI=\Delta ACI\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)(2 cạnh t/ứ)

\(BI=CI\)(2 cạnh t/ứ)

Xét\(\Delta ABE\)\(\Delta ACF\)có:

\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)

\(AB=AC\)​(\(\Delta ABC\)cân tại\(A\))

\(\widehat{BAC}\)là góc chung
Do đó:\(\Delta ABE=\Delta ACF\left(g-c-g\right)\)
\(\Rightarrow BE=CF\)(2 cạnh t/ứ)
Xét\(\Delta IBC\)có:\(IB=IC\left(cmt\right)\)
Do đó:\(\Delta IBC\)cân tại\(I\)(Định nghĩa\(\Delta\)cân)
c)Gọi\(M\)là giao điểm của\(AI\)\(BC\),\(H\)là đg cao xuất phát từ đỉnh\(P\)của\(\Delta ABP\)
Xét\(\Delta ABC\)có:\(AM\)là tia p/g của\(\widehat{BAC}\))
\(\Delta ABC\)cân tại\(A\left(GT\right)\)
\(\Rightarrow AM\)là đg trung trực của\(BC\)(Tính chất về tg cân)
\(\Rightarrow AM\perp BC\)
hay\(AP\perp BM\)
Xét\(\Delta ABP\)có:\(BM\)là đg cao xuất phát từ đỉnh\(B\left(cmt\right)\)
\(PH\)là đg cao xuất phát từ đỉnh\(P\left(GT\right)\)
\(BM\)cắt\(PH\)tại\(K\)
\(\Rightarrow AK\)là đg cao thứ 3 của\(\Delta ABP\)hay\(AK\perp BP\)
 
15 tháng 3 2017

Ba đường trung tuyến của tam giác này có cùng đi qua một điểm

20 tháng 8 2017

a) DE // AB, DE = \(\dfrac{1}{2}\)AB, IK // AB, IK = \(\dfrac{1}{2}\)AB

=> DE//IK và DE = IK

b) Xét tg GDE và tg GIK có:

DE = IK (cmt)

GDE = GIK (slt)

GED = GKI (slt)

=> tg GDE = tg GIK (g.c.g)

=> GD = GI ( c.t.ứ)

Có GD = GI = IA nên AG = \(\dfrac{2}{3}\)AD

1 tháng 5 2018

có hình ko bn

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta có:

     \(\dfrac{{AG}}{{AM}} = \dfrac{6}{9} = \dfrac{2}{3}\);

     \(\dfrac{{BG}}{{BN}} = \dfrac{4}{6} = \dfrac{2}{3}\);

     \(\dfrac{{CG}}{{CP}} = \dfrac{4}{6} = \dfrac{2}{3}\).

12 tháng 5 2017

A B C D E F I G

a) Xét \(\Delta ABC\)\(D\)là trung điểm của \(BC\)\(E\)là trung điểm của \(AC\)\(\Rightarrow\)\(ED\)là đường trung bình của \(\Delta ABC\).

\(\Rightarrow ED\)//\(AB\)và \(ED=\frac{1}{2}AB\)\(F\)là trung điểm của \(AB\)\(\Rightarrow ED=AF=FB=\frac{1}{2}AB\)

\(ED\)//\(AB\Rightarrow ED\)//\(AF\Rightarrow ID\)//\(AF\). Mà \(FI\)//\(AD\).

\(\Rightarrow FI=AD\)và \(ID=AF\)(Tính chất đoạn chắn)

Mà \(ED=AF\Rightarrow ED=ID\).

Xét \(\Delta EDB\)và \(\Delta IDC:\)

\(DB=DC\)

\(\widehat{EDB}=\widehat{IDC}\)(Đối đỉnh)     \(\Rightarrow\Delta EDB=\Delta IDC\)\(\left(c.g.c\right)\)

\(ED=ID\)

\(\Rightarrow\widehat{BED}=\widehat{CID}\)(2 góc tương ứng) và 2 góc này nằm ở vị trí so le trong \(\Rightarrow IC\)//\(BE\)

Đồng thời \(IC=BE\)(2 cạnh tương ứng)

b) \(AD\)//\(FI\Rightarrow\widehat{AGE}=\widehat{FHG}\Rightarrow\widehat{FHG}=90^0\)(Đồng vị). Mà \(BE\)//\(IC\)\(\Rightarrow\widehat{FHB}=\widehat{FIC}=90^0\)(Đồng vị)

\(\Rightarrow\Delta ICF\)là tam giác vuông tại \(I\).

Ta có: \(FI=AD\),\(IC=BE\)(cmt) \(\Rightarrow FI+IC+CF=AD+BE+CF\)(đpcm)