K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Đặt  \(ab=x;\)\(bc=y;\)\(ca=z\)

Khi đó:   \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

<=>  \(x^3+y^3+z^3=3xyz\)

<=>  \(x^3+y^3+z^3-3xyz=0\)

<=>  \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

Nếu:  \(x+y+z=0\)thì:  \(ab+bc+ca=0\)

\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\)

\(=\frac{\left(a+b\right)\left(b+c\right)}{bc}+\frac{c}{a}+1=\frac{ab+ac+bc+b^2}{bc}+\frac{c}{a}+1\)

\(=\frac{b}{c}+\frac{c}{a}+1=\frac{ab+c^2+ac}{ac}=\frac{c^2-bc}{ac}=\frac{c-b}{a}\)

Nếu:  \(x^2+y^2+z^2-xy-yz-zx=0\)<=>   \(x=y=z\)

<=>  \(ab=bc=ca\)<=>  \(a=b=c\)

\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)=2.2+2=6\)

p/s: trg hợp 1 mk lm đc đến có z thôi, bn tham khảo

23 tháng 8 2016

Nhận xét: \(b^3c-cb^3=0;b^2c-cb^2=0.\).Nên phân thức trở thành:

\(\frac{a^3b-ab^3+c^3a-ca^3}{a^2b-ab^2+c^2a-ca^2}=\frac{a^3\left(b-c\right)-a\left(b^3-c^3\right)}{a^2\left(b-c\right)-a\left(b^2-c^2\right)}\)
\(=\frac{a\left(b-c\right)\left\{a^2-\left(b^2-bc+c^2\right)\right\}}{a\left(b-c\right)\left\{a-\left(b+c\right)\right\}}\)
\(=\frac{a^2-\left(b^2-bc+c^2\right)}{a-\left(b+c\right)}=\frac{a^2-\left(b+c\right)^2+3bc}{a-\left(b+c\right)}\)
\(=a+b+c+\frac{3bc}{a-b-c}\).

19 tháng 7 2021

Trả lời:

a, ( a + b )3 + ( a - b )3 

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3

= 2a3 + 6ab2

= 2a ( a2 + 3b2 )  (đpcm)

b, Sửa đề: ( a + b )3 - ( a - b )3

= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b ( b2 + 2a2 ) 

19 tháng 7 2021

Trả lời:

( câu b vừa nãy tớ làm nhầm )

b, ( a + b )3 - ( a - b )3 

= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b ( b2 + 3a2 )  (đpcm)

11 tháng 8 2017

a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3-6ab^2=0\)

\(\Leftrightarrow0=0\) ( đpcm) .

b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2a^3-6ab^2=0\)

\(\Leftrightarrow0=0\) ( luôn đúng )

Vậy đẳng thức được chứng minh.

11 tháng 8 2017

Làm cách khác với "thị nở" :v.

a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)

\(=\left[\left(a+b\right)+\left(a-b\right)\right]\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2a\left(a^2+3b^2\right)\)

\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)

\(=2a\left(a^2+3b^2\right)=2a\left(a^2+3b^2\right)\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

\(=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2b\left(b^2+3a^2\right)\)

\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)=2b\left(b^1+3a^2\right)\)\(=2b^2\left(b^2+3a^2\right)=2b^2\left(b^2+3a^2\right)\)