Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : P = a^2-5a - a^2-8a - 13
= -13a-13 = 13.(-a-1) chia hết cho 13
=> P là bội của 13
Có : Q = a^2+2a-16-a^2+2a+15 = 4a chia hết cho 4
Tk mk nha
Nếu 4 mũ số lẻ thì tận cùng sẽ là 4 và số chẵn tận cùng sẽ là 6
=> 4+6+4+6+...+6 ( chỉ lấy số tận cùng nhé)
=>số tận cùng của dãy là 0
=> 0 x 4^100 = 0 x 6 = 0
vậy dãy số đó tận cùng là 0 nên chia hết 5
a1. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)
A = \(\left(1+4\right)+4^2\left(1+4\right)+...+4^{58}\left(1+4\right)\)
A = \(5+4^2.5+...+4^{58}.5\)
A = \(5\left(1+4^2+...+4^{58}\right)⋮5\)
a2. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)
A = \(\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)
A = \(\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)
A = \(\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\)
A = \(21.\left(1+4^3+...+4^{57}\right)⋮21\)
a3. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)
A = \(\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)
A = \(\left(1+4+4^2+4^3\right)+4^4\left(1+4+4^2+4^3\right)+...+4^{56}\left(1+4+4^2+4^3\right)\)
A = \(\left(1+4+4^2+4^3\right)\left(1+4^4+...+4^{56}\right)\)
A = \(85.\left(1+4^4+...+4^{56}\right)⋮85\)
Câu B sao thứ tự số mũ chẳng có quy luật vậy, sao mà làm được :v
mình đặt tên cho dễ
A=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮5\)
A=(1+4)+4^2(1+4)+.....+4^58(1+4)
A=5+4^2.5+....4^58.5
A=5.(1+4^2+....+4^58) => đcpm
B=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮21\)
B=(1+4+4^2)+.........+(4^57+4^58+4^59)
B= (1+4+4^2)+4^3(1+4+4^2)+.....+4^47(1+4+4^2
B=(1+4+4^2)+1+4^3+.....+4^57)
B=21.(1+4^3+.....+4^57)\(⋮21\Rightarrowđcpm\)
\(A=\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\)
\(A=5\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)\)
\(\frac{A}{5}=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\)
\(\frac{4A}{5}=1+\frac{1}{4}+...+\frac{1}{4^{98}}\)
\(\frac{4A}{5}-\frac{A}{5}=\left(1+\frac{1}{4}+...+\frac{1}{4^{98}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)\)
\(\frac{3A}{5}=1-\frac{1}{4^{99}}\Rightarrow A=\frac{5}{3}-\frac{5}{3\cdot4^{99}}< \frac{5}{3}\)
a, C = 1 + 4 + 42 + 43 + 44 + 45 + 46
4C = 4 + 42 + 43 + 44 + 45 + 46 + 47
b, 4C - C = ( 4+42 + 43 + 44 +45 + 46 + 47 ) - ( 1 + 4 + 42 + 43 +44 +45 + 46 )
3C = 47 - 1
=> C = ( 47 - 1 ) : 3
\(A=\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)
\(\Leftrightarrow5A=\frac{1}{5}+\frac{2}{5^2}+......+\frac{99}{5^{99}}\)
\(\Leftrightarrow5A-A=\left(\frac{1}{5}+\frac{2}{5^2}+....+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)
\(\Leftrightarrow4A=\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
Đặt : \(H=\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\)
\(\Leftrightarrow5H=1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\)
\(\Leftrightarrow5H-H=\left(1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)
\(\Leftrightarrow4H=1-\frac{1}{5^{99}}\)
\(\Leftrightarrow H=\frac{1}{4}-\frac{1}{4.5^{99}}< \frac{1}{4}\)
\(\Leftrightarrow4A< B< \frac{1}{4}\)
\(\Leftrightarrow A< \frac{1}{16}\left(đpcm\right)\)
a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5
= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))
= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )
= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20
= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5
4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21
= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )
= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )
= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84
= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21
b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6
= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )
= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )
= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30
= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6
Q=(a+5).(a-3)-(a-5).(a+3) chia hết cho 4.
Q=(a+5).(a-3)-(a-5).(a+3)
Q = (a+5).a-(a+5).3 - (a-5).a + (a-5).3
Q = a.a +5a - 3a + 5.3 - a.a - 5a + 3a - 5.3
Q = a2 + 5a - 3a +15 - a2 - 5a + 3a - 15
Q = a2 - a2 +5a - 3a +15 - 15
Q = 0
Ơ Q ko chia hết cho 4